

Data Pre-processing: Clean, Reduce and Transform

Anran Zhao

Research Associate at UK Data Service

Email: anran.zhao@manchester.ac.uk

Table of Content

- Definition, context, and collecting data
- Data integration (join tables)
- Data cleaning (missing values, outliers, data types)
- Data reduction (correlation check, PCA, sampling)
- Data transformation (normalisation, one-hot encoding)

Recap

• Data pre-processing (a.k.a. data preparation) is the process of manipulating or pre-processing raw data from one or more sources into a structured and clean data set for analysis. It is an important part of Data Analytics.

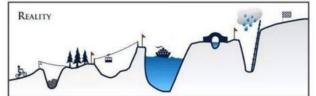


Table of Content

- Definition, context, and collecting data
- Data integration (join tables)
- Data cleaning (missing values, outliers, data types)
- Data reduction (correlation check, PCA, sampling)
- Data transformation (normalisation, one-hot encoding)

Data Cleaning - Quality Issues

- Data in the real world is dirty:
 - Incomplete or missing: lacking attribute values or certain attributes of interest, or containing only aggregate data,
 - e.g., occupation=" " (missing data), Jan. 1 as everyone's birthday? (disguised missing data)
 - Inaccurate or noisy: containing errors or outliers,
 e.g., salary="-10" (an error)
 - Inconsistent: containing discrepancies in codes or names,
 e.g., age = "42" and birthday="03/07/1997"

Dirty Data – Example

·									
Days On					On Market				
Market	Chain	House No.	Street	City	Date	PostCode	Price		
319	FALSE	40	Main Road	Manchester	08/03/2019	M19 2PE	£104,000		
411	TRUE	198	Main Road	Edinburgh	08/02/2018	M19 2PF	£111,000		
191	TRUE	58	Grange Road	Manchester	26/05/2018	M19 7YC	£96,000		
247	TRUE	32	Green Lane	Manchester	20/02/2019	M19 3EN			
149	FALSE	35	The Drive	Manchester	29/04/2018	M19 9GI	£167,000		
316	TRUE	147	Stanley Road	Manchester	04/02/2019	M19 2KB	£120,000		
399	FALSE	19	Mill Lane	Manchester	26/05/2018		NULL		
422	Unknown	145	Main Road	Manchester	16/07/2018	M19 3EC	POA		
339	FALSE	194	The Grove	Manchester	08/06/2019	M19 5KH	£200,000		
220	TRUE	175	The Green	Manchester	09/05/2018	M19 6AH	£155,000		
116	TRUE	145	Grange Road	Manchester	26/05/2018	M19 3PF	£90,000		
339	FALSE	194	The Grove	Manchester	08/06/2019	M88 5KH	£205,000		
238	FALSE	61	Mill Road	Manchester	20/02/2019	M19 RD	£197,000		
					A				

5. Duplicate records?

2. Date data may not in desired format

4. Incorrect (invalid) postcode?

Why Data Cleaning?

- "Data cleaning is one of the three biggest problems in data warehousing"— Ralph Kimball
- "Data cleaning is the number one problem in data warehousing"— DCI survey
- Quality data beats fancy data mining algorithms

Incomplete (Missing) Data

- Data is not always available
 - E.g., many rows have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - Equipment malfunction
 - Inconsistent with other recorded data and thus deleted
 - Data not entered due to misunderstanding
 - Certain data may not be considered important at the time of entry
 - No recorded history or changes of the data

No Easy Fix for Missing Values

<u>Throw</u> out the records with missing values?

■ No? This creates a bias for the sample

Delete the column with missing values?

■ No? Only if the column data is unnecessary

Replace missing values with a "special" value (e.g., -99)?

■ No. This resembles any other value to data analytics.

Replace with some "typical" value? mean, median, or mode?

■ Maybe. Possible changes to the distribution.

<u>Impute</u> a value? (Imputed values should be flagged.)

■ Maybe. Use distribution of values to randomly choose a value.

Use data mining techniques that can handle missing values?

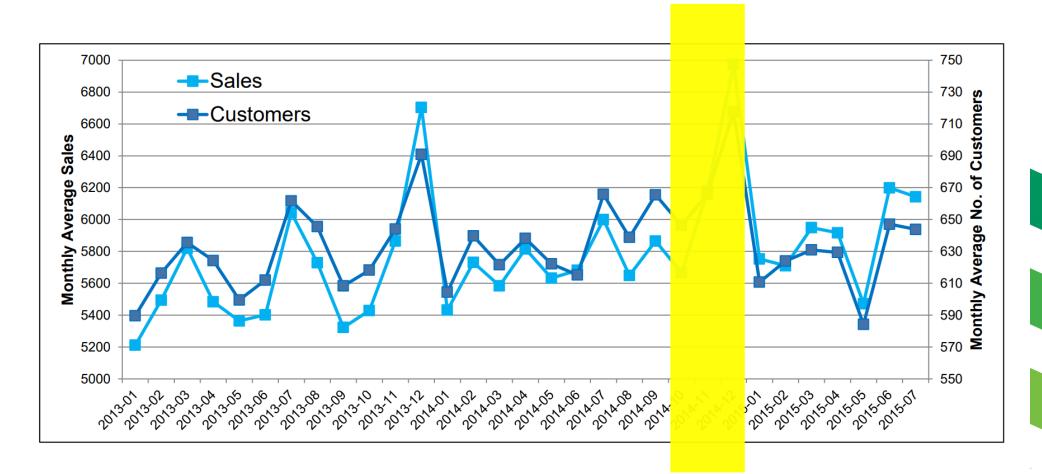
■ Yes. For example, decision tree can be applicable.

Partition records and build multiple models?

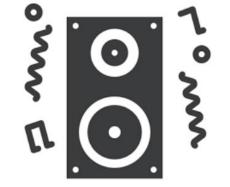
■ Yes. This is possible when data isn't insufficient.

No Easy Fix – Time Series Data

How to find and impute these missing data?



Inaccurate (Noisy) Data



Noise: random error or variance in a measured variable

- Incorrect attribute values may be due to
 - Faulty data collection instruments
 - Data entry problems
 - Data transmission problems
 - Technology limitation
 - Inconsistency in naming convention

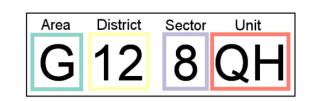
How to Handle Noisy Data?

- Binning and smoothing
 - Sort data and partition into bins (equal-width, equal-depth)
 - Smooth by bin means, median, or boundaries, etc.
- Regression
 - Smooth by fitting the data into a function with regression
- Clustering
 - Detect and remove outliers that fall outside clusters
- Combined computer and human inspection
 - Detect suspicious values and check by human (e.g., deal with possible outliers)

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
 - Partition into 3 frequency (equal-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
 - Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
 - Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Other relevant concepts



 Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections

 Data auditing: analyse data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)

Data validating: value range checks, regular expressions, uniqueness checks

Table of Content

- Definition, context, and collecting data
- Data integration (join tables)
- Data cleaning (missing values, outliers, data types)
- Data reduction (correlation check, PCA, sampling)
- Data transformation (normalisation, one-hot encoding)

Data Reduction

- Why data reduction?
- A database/data warehouse may store terabytes of data
- Complex analysis may take a very long time to run on the complete data set

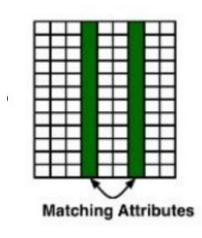
- Data reduction
- Obtain a reduced representation of the data set much smaller in volume but yet produces almost the same analytical results

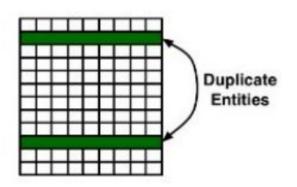
Data Reduction During Integration

Redundant data is often created when integrating multiple databases

 Column-oriented: the same attribute may have different names in different databases

Row-oriented: duplicate entities, etc.



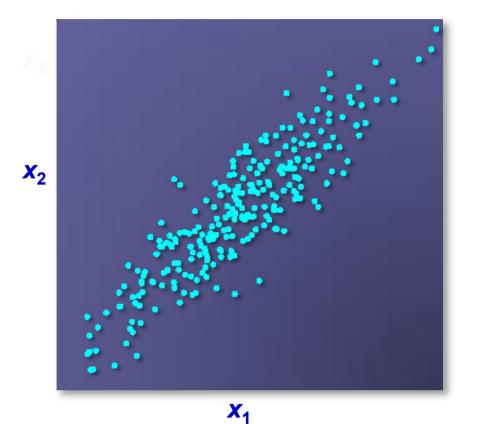


Data Reduction Strategies

- Dimensionality reduction
 - Remove redundant and irrelevant attributes
 - Principal component analysis (PCA)
 - Variable clustering
 - Featuring engineering

- Numerosity reduction
 - Sampling techniques
 - Regression and log-linear models
 - Histograms, clustering

Variable Reduction – Correlation analysis



Redundancy: Input x_2 has the same information as input x_1 .

Correlation Analysis – Numerical Variables

- **Correlation** between two variables *x1* and *x2* is the standard covariance, obtained by normalising the covariance with the standard deviation of each variable.
- Sample correlation for two attributes x1 and x2: where n is the number of samples, $\mu1$ and $\mu2$ are the respective means, $\sigma1$ and $\sigma2$ are the respective standard deviation of x1 and x2

$$\hat{\rho}_{12} = \frac{\hat{\sigma}_{12}}{\hat{\sigma}_{1}\hat{\sigma}_{2}} = \frac{\sum_{i=1}^{n} (x_{i1} - \hat{\mu}_{1})(x_{i2} - \hat{\mu}_{2})}{\sqrt{\sum_{i=1}^{n} (x_{i1} - \hat{\mu}_{1})^{2} \sum_{i=1}^{n} (x_{i2} - \hat{\mu}_{2})^{2}}}$$

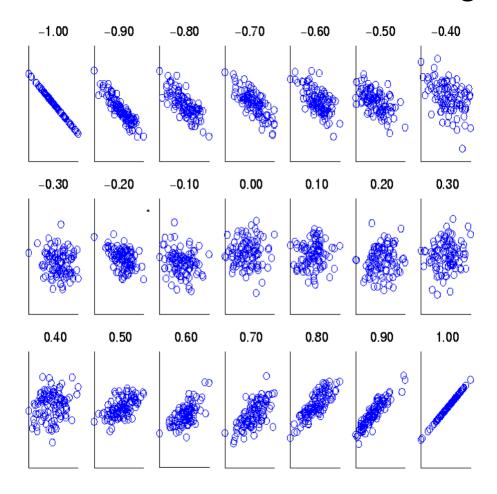
Correlation Analysis – Numerical Variables

- Sample correlation for two attributes x1 and x2: where n is the number of tuples, $\mu1$ and $\mu2$ are the respective means, $\sigma1$ and $\sigma2$ are the respective standard deviation of x1 and x2
 - If ρ12 > 0: x1 and x2 are positively correlated (x1 's values increase as x2 's increase)
 - If $\rho 12 = 0$: independent
 - If ρ12 < 0: negatively correlated

$$\hat{\rho}_{12} = \frac{\hat{\sigma}_{12}}{\hat{\sigma}_{1}\hat{\sigma}_{2}} = \frac{\sum_{i=1}^{n} (x_{i1} - \hat{\mu}_{1})(x_{i2} - \hat{\mu}_{2})}{\sqrt{\sum_{i=1}^{n} (x_{i1} - \hat{\mu}_{1})^{2} \sum_{i=1}^{n} (x_{i2} - \hat{\mu}_{2})^{2}}}$$

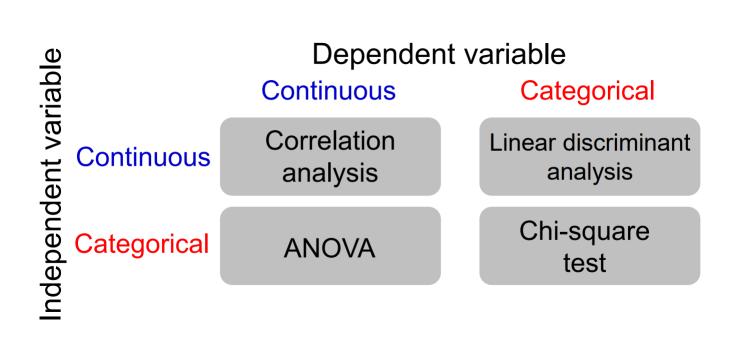
Visualising Correlation Coefficients

Correlation coefficient value range: [-1, 1]



Correlation Analysis

 Methods for testing correlation/ dependence/ association between independent and dependent variables



Variable Reduction – Principal Component Analysis

 Principal components are constructed as mathematical transformations of the input variables. Each is an uncorrelated, linear combination of original input variables.

$$pc_1 = a_1 x_1 + b_1 x_2 + c_1 x_3$$

- The coefficients of such a linear combination are the eigenvectors of the correlation or covariance matrix.
- The principal components are sorted by descending order of the eigenvalues.
- The eigenvalues represent the variances of the principal components.

Numerosity Reduction

- Non-parametric methods
- Do not assume models
- E.g. Sampling, clustering, histograms, etc.
- Parametric methods
- Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data
- E.g. regression, log-linear models

Sampling

- Sampling: obtaining a small set of samples to represent the whole data set
 - Simple random sampling
 - Sampling without replacement
 - Sampling with replacement
 - Stratified sampling

Table of Content

- Definition, context, and collecting data
- Data integration (join tables)
- Data cleaning (missing values, outliers, data types)
- Data reduction (correlation check, PCA, sampling)
- Data transformation (normalisation and one-hot encoding)

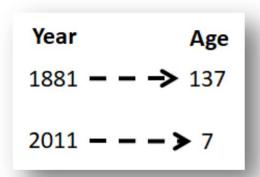
Data Transformation

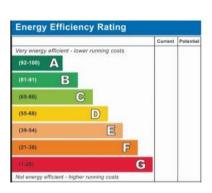
 A function that maps the entire set of values of a given attribute to a new set of replacement values, s.t., each old value can be identified with one of the new values

- Relevant methods:
- Normalisation/ Standardisation: scale data to fall within a smaller, specified range
 - » min-max normalisation
 - » z-score normalisation
 - » normalisation by decimal scaling

Data Transformation Examples

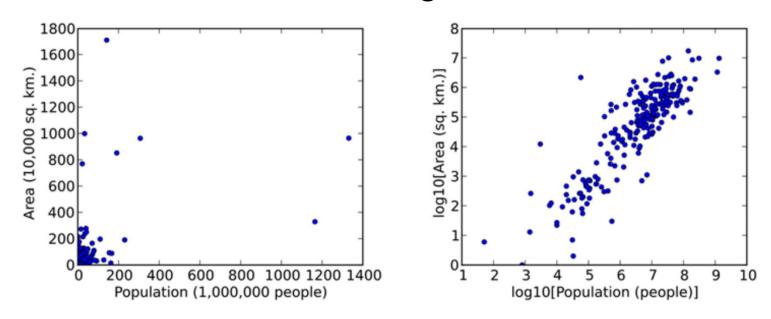
- Standardise numeric values
- Change counts into percentages.
- Translate dates to durations.
- Capture trends with ratios, differences, etc.
- Replace categorical values with appropriate numeric values





Data Transformation – Examples cont.

Transform variables to bring information to the surface.



 Transform using mathematical functions, such as logs, reciprocal, or square root, for "stretching" and "squishing"

One-hot Encoding

Use binary variables to replace a categorical feature.

Human-Readable			Machine-Readable				
	Pet		Cat	Dog	Turtle	Fish	
	Cat		1	0	0	0	
	Dog		0	1	0	0	
	Turtle		0	0	1	0	
	Fish		0	0	0	1	
	Cat		1	0	0	0	

Min-Max Normalisation

min-max normalisation

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- Example income, min £12,000, max £98,000 map to 0.0 1.0
- £73,600 is transformed to:

$$\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$$

Z-score Normalisation

z-score normalisation (μ: mean, σ: standard deviation)

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- z-score: The distance between the raw score and the population mean in the unit of the standard deviation
- Let $\mu = 54,000$, $\sigma = 16,000$.

$$\frac{73,600 - 54,000}{16,000} = 1.225$$

Normalisation by Decimal Scaling

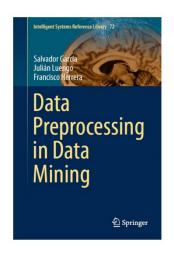
Normalisation by decimal scaling

$$v' = \frac{v}{10^{j}}$$

- where j is the smallest integer such that $Max(|v'|) \triangleleft$
- Example recorded values from -722 to 821
- Divide each value by 1000
 - -28 normalised to -.028
 - 444 normalised to 0.444

Acknowledgement

Some of the content is based on ...



García, S., Luengo, J. and Herrera, F., 2015. Data preprocessing in data mining New York: Springer.

Yu-wang Chen.
"Understanding Data
and Their EnvironmentData Preprocessing"
(2019)

You might be interested in...

Upcoming events:

- Online workshop: Data Pre-processing Methods in Python, on 1pm Jan 28
- Online workshop: Techniques and Methods of Analysis for Social Network Data, on 2pm Jan 27
- UK Data Service Computational Social Science Drop-in, on 1pm Feb 9
- Recent events:
- Text-mining series
- Social Network Analysis series
- Data in the spotlight: UK and cross-national surveys