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Recap

 Data pre-processing (a.k.a. data preparation) is
the process of manipulating or pre-processing raw
data from one or more sources into a structured and
clean data set for analysis. It is an important part of

Data Analytics.
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Data Cleaning - Quality Issues

» Data in the real world is dirty:

* Incomplete or missing: lacking attribute values o
certain attributes of interest, or containing only
aggregate data,

e.g., occupation="" (missing data), Jan. 1 as

everyone’s birthday? (disguised missing data)

* Inaccurate or noisy: containing errors or outliers,
e.g., salary="-10" (an error)

* Inconsistent: containing discrepancies in codes or na
e.g., age = “42” and birthday="03/07/1997"

kN

me




Dirty Data — Example

3. Inconsistency =

NS
Days On SN On Market
Market = Chain |House No. Stre‘t \ City Date |PostCode| Price
319 FALSE 40 Main Roaalwwanchester 08/03/2019M19 2PE | £104,000
411 TRUE 198/ Main Road [Edinburgh 108/02/2018M19 2PF | £111,000
191 TRUE 58 Grange Road | Manchester  26/05/2018M19 7YC | £96,000
247 TRUE 32| Green Lane | Manchester 20/02/2019M19 3EN
149 FALSE 35 The Drive Manchester | 29/04/2018M19 9GI | £167,000
316/ TRUE 147 Stanley Road | Manchester | 04/02/2019M19 2KB | £120,000
399 FALSE 19| Mill Lane Manchester | 26/05/2018 NULL
422|Unknown 145 Main Road | Manchester|16/07/2018M19 3EC POA
P 339 FALSE 194 The Grove Manchester | 08/06/2019M19 5KH | £200,000
/ 2200 TRUE 175 The Green | Manchester 09/05/2018M19 6AH | £155,000
/ 116 TRUE 145 Grange Road | Manchester | 26/05/2018M19 3PF | £90,000
/ - i 339 FALSE 194 The Grove | Manchester |08/06/2019M88 5KH | £205,000
s 238 FALSE 61 Mill Road Manchester 20/02/2019JM1@RD £197,000
V4 -——_-—=_ A i
| /7 ~ \
| 2. Date data l
\ 5. Duplicate records? may not in 4. Incorrect (invalid)

desired format postcode?



Why Data Cleaning?

 “Data cleaning is one of the three biggest problems in
data warehousing™— Ralph Kimball

 “Data cleaning is the number one problem in data
warehousing™— DCI survey

* Quality data beats fancy data mining algorithms
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Incomplete (Missing) Data -

5
a

 Data is not always available XS

« E.g., many rows have no recorded value for several
attributes, such as customer income in sales data

* Missing data may be due to
« Equipment malfunction

* Inconsistent with other recorded data and thus delet

« Data not entered due to misunderstanding

 Certain data may not be considered important at the
time of entry

* No recorded history or changes of the data



=

No Easy Fix for Missing Values < @0

Throw out the records with missing values?

m No? This creates a bias for the sample

Delete the column with missing values?

m No? Only if the column data is unnecessary

Replace missing values with a “special” value (e.g., -99)?

m No. This resembles any other value to data analytics.
Replace with some “typical” value? mean, median, or mode?

m Maybe. Possible changes to the distribution.

Impute a value? (Imputed values should be flagged.)

m Maybe. Use distribution of values to randomly choose a value.
Use data mining techniques that can handle missing values?

m Yes. For example, decision tree can be applicable.

Partition records and build multiple models?

m Yes. This is possible when data isn’t insufficient.
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No Easy Fix — Time Series Data
* How to find and impute these missing data?
¥



Inaccurate (Noisy) Data

 Noise: random error or variance in a measured vari

* |Incorrect attribute values may be due to
» Faulty data collection instruments
« Data entry problems
e Data transmission problems
» Technology limitation
* Inconsistency in naming convention




How to Handle Noisy Data”

* Binning and smoothing
« Sort data and partition into bins (equal-width, equ
* Smooth by bin means, median, or boundaries, eteé:
« Regression
* Smooth by fitting the data into a function with re
 Clustering
» Detect and remove outliers that fall outside cluste
« Combined computer and human inspection

 Detect suspicious values and check by human (e.g.
possible outliers)




Binning Methods for Data Smoothing

« Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26,
 Partition into 3 frequency (equal-depth) bins:
-Bin1:4, 8,9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34
« Smoothing by bin means:

-Bin1:9,9,9,9

- Bin 2: 23, 23, 23, 23 s AR -
- Bin 3: 29, 29, 29, 29 - . .

« Smoothing by bin boundaries:
-Bin1:4,4,4, 15

- Bin 2: 21, 21, 25, 25
- Bin 3: 26, 26, 26, 34




a District  Sector

Other relevant concepts G128

Unit

QH

» Data scrubbing: use simple domain knowledge
(e.g., postal code, spell-check) to detect errors
and make corrections

« Data auditing: analyse data to discover rules and
relationship to detect violators (e.g., correlation
and clustering to find outliers)

« Data validating: value range checks, regular
expressions, uniqueness checks
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Data Reduction -
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 Why data reduction?

« A database/data warehouse may store terabytes
data

« Complex analysis may take a very long time to run
on the complete data set

« Data reduction
« Obtain a reduced representation of the data set -
much smaller in volume but yet produces almost the

same analytical results




Data Reduction During Integration

 Redundant data is often created when integrating
multiple databases

» Column-oriented: the same attribute may have different
names in different databases

* Row-oriented: duplicate entities, eftc.

Duplicate
Entities

Matching Attributes




Data Reduction Strategies

 Dimensionality reduction
* Remove redundant and irrelevant attributes
* Principal component analysis (PCA)
* Variable clustering
* Featuring engineering

 Numerosity reduction
« Sampling techniques
* Regression and log-linear models
* Histograms, clustering
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Variable Reduction — Correlation analysis

Redundancy:
Input x, has the same
information as input x,.
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Correlation Analysis — Numerical Variables
e Correlation between two variables x7 and x2 is the standard
covariance, obtained by normalising the covariance with th
standard deviation of each variable.

« Sample correlation for two attributes x7 and x2: where n is
the number of samples, y7 and u2 are the respective mea

ns
o1 and o2 are the respective standard deviation of x7 and
A T, _ i=1
/Olz .
0-10-2

\/z (x, =AY (x, = f2,)




Correlation Analysis — Numerical Variables

« Sample correlation for two attributes x7 and x2: whe
number of tuples, y7 and uy2 are the respective me
are the respective standard deviation of x7 and x2

 If p12 > 0: x1 and x2 are positively correlated (x1's
as x2 ’s increase)

* If p12 = 0: independent
* If p12 < 0: negatively correlated

and 0’

Increase

n Z (xfl_ﬁl)(xEQ_ﬁQ)
A O, _ i=1
P, = o

g0, " ] o
Z (x“_ﬂl) Z (xgg_zug)
i=1 i=1

1



Visualising Correlation Coefficients

» Correlation coefficient value range: [-1, 1]
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Correlation Analysis

* Methods for testing correlation/ dependence/
association between independent and dependent
variables

@ Dependent variable

E Continuous Categorical

g Continuous Correlation Linear discriminant
% analysis analysis

©

S - Chi-square

O Categorical ANOVA st

)
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Variable Reduction — Principal Component Analysi

* Principal components are constructed as mathematic
transformations of the input variables. Each is an
uncorrelated, linear combination of original input variables.

pc, = a,x, +bx, +cx,
 The coefficients of such a linear combination are the

eigenvectors of the correlation or covariance matri

* The principal components are sorted by descending o
of the eigenvalues.

* The eigenvalues represent the variances of the princi

components.




Numerosity Reduction

 Non-parametric methods
Do not assume models

« E.g. Sampling, clustering, histograms, etc.

« Parametric methods

 Assume the data fits some model, estimate model

parameters, store only the parameters, and discar
data

* E.g. regression, log-linear models

d the

7/ \



W e o

Population Smpl

Sampling

« Sampling: obtaining a small set of samples to represe
the whole data set

« Simple random sampling

« Sampling without replacement
« Sampling with replacement
 Stratified sampling
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Data Transformation

A function that maps the entire set of values of a gi
attribute to a new set of replacement values, s.t., e

ve

\

old value can be identified with one of the new values

* Relevant methods:
 Normalisation/ Standardisation: scale data to fall
a smaller, specified range
» min-max normalisation
» Z-score normalisation
» normalisation by decimal scaling




Data Transformation Examples

« Standardise numeric values

* Change counts into percentages.

* Translate dates to durations.

« Capture trends with ratios, differences, etc.

* Replace categorical values with appropriate nume
values

Year Age
1881 = = => 137
2011 == = = 7

r
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Data Transformation — Examples cont.
* Transform variables to bring information to the surfac ‘

8

7 o*
81400* EG_ . '..." o.o ¥
kv;
p N B »
g1200 g‘s- " ‘b -
o —
81000" o af :&
S 800f 33 S B
; 600} S
g EE

1

0

 Transform using mathematical functions, such as lo

reciprocal, or square root, for “stretching” and “squm
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One-hot Encoding

« Use binary variables to replace a categorical featur

Human-Readable Machine-Readable
Pet Cat__|Dog |Turtle | Fish _
Cat 1 0 0 0
Dog 0 1 0 0
Turtle 0 0 1 0
Fish 0 0 0 1
Cat 1 0 0 0
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Min-Max Normalisation

* min-max normalisation

. V—mina . :
V= — (new _max.—new_min.) +new_ min.
max.— min.

« Example — income, min £12,000, max £98,000 —
map to 0.0 — 1.0

e £73,600 is transformed to:

73,600—-12,000
98,000—-12,000

(1.0-0)+0=0.716
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Z-score Normalisation

« z-score normalisation (J: mean, o: standard deviation

" V—uA
O

v

e z-score: The distance between the raw score and
population mean in the unit of the standard deviati

* Let y=54,000, o = 16,000.

73,600 —54,000
16,000

=1.225

th
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Normalisation by Decimal Scaling

* Normalisation by decimal scaling
V

10

'

Vv

* where j is the smallest integer such that Max(| v/)

 Example — recorded values from -722 to 821
 Divide each value by 1000

 -28 normalised to -.028

* 444 normalised to 0.444
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You might be interested in...

Upcoming events:
* Online workshop: Data Pre-processing Methods in Pyt Ja

* Online workshop: Techniques and Methods of Analysi ocial Net
Data, on 2pm Jan 27

UK Data Service Computational Social Science Drop-i
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* Recent events:

* Text-mining series

« Social Network Analysis series

« Data in the spotlight: UK and cross-national surveys
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