Dplyr tutorial: A demo using data from Great British Bake Off

Making the most of census microdata: An Introductory workshop

Ana Morales

This example will demonstrate the main functions of the package dplyr. We will be using
data of the participants of the Great British Bake Off 2018. You will need to copy the R code
and paste it on an R script. R codes are coloured throughout the document.

First we need to load dplyr into R

library(dplyr)
Let’s make our own dataset

Here we are creating free variables (vectors in R). Copy the following code and paste on
to an R Studio Script:

names<-c("Antony Amourdoux", "Briony Williams", "Dan Beasley-Harling","Imelda
McCarron", "Jon Jenkins", "Karen Wright","Kim-Joy","Luke Thompson","Manon Lag
rA“ve", "Rahul Mandal", "Ruby Bhogal" ,"Terry Hartill")

sex<- c("male", "female","male", "female", "male", "female", "female","male",
"female", "male", "female", "male")

hometown<-c("London", "Bristol", "London", "County Tyrone", "Newport","Wakefi
eld", "Leeds", "Sheffield", "London", "Rotherham","London", "West Midlands")

occupation<- c("Banker", "Full-time parent", "Full-time parent", "Countryside
recreation officer", "Blood courier", "In-store sampling assistant", "Mental

health specialist"”,"Civil servant/house and techno DJ", "Software project man
ager", "Research scientist", "Project manager", "Retired air steward")

age<- c(30, 33, 36, 33, 47, 60, 27, 30, 26, 30, 30, 56)

And now we put all the variables together in a dataframe

gbbo<-data.frame(names, age, sex, hometown, occupation)

Let’s start with the Demo

1. select()

Select the variables names and age

select(gbbo, names, age, sex)

#H# names age sex
##H# 1 Antony Amourdoux 30 male
2 Briony Williams 33 female
3 Dan Beasley-Harling 36 male
##t 4 Imelda McCarron 33 female
##t 5 Jon Jenkins 47 male
6 Karen Wright 60 female
#t 7 Kim-Joy 27 female
8 Luke Thompson 30 male
9 Manon LagrA“ve 26 female
#it 10 Rahul Mandal 30 male
11 Ruby Bhogal 30 female
#it 12 Terry Hartill 56 male

You can store the selected variables into a new dataframe

gbbo_1<-select(gbbo, names, age, sex)
View(gbbo 1) # This allow you to see the dataset in a different t
ab

2. filter()

Now, filter (select) a subsample of gbbo participants younger than 30 and store them into a
new dataframe

filter(gbbo 1, age<30)

names age sex
##H# 1 Kim-Joy 27 female
2 Manon LagrA”ve 26 female

gbbo_2<-filter(gbbo_1, age<30)

3. join()

This example, uses the join function to add more variables to the last dataset created.

left_join(gbbo_2, gbbo)
Joining, by = c("names", "age", "sex"

#H# names age sex hometown

occupation

#it 1 Kim-Joy 27 female Leeds Mental health specialist
2 Manon LagrA“ve 26 female London Software project manager

dplyr automatically identifies the common variables and joins the dataset accordingly, but
it is good practice to specify the variable(s) that indentifies the cases in both datasets; such

as ID, names (if they are unique), etc. For example:

e Let’s specify that our key variable is “names”

left_join(gbbo_2, gbbo, by = "names”

names age.x sex.X age.y sex.y hometown
##t 1 Kim-3Joy 27 female 27 female Leeds
2 Manon LagrA“ve 26 female 26 female London
H#it occupation

1 Mental health specialist
2 Software project manager
e Let’s use more that one key variable: names and age

left_join(gbbo 2, gbbo, by = c("names","age"))

H## names age sex.Xx sex.y hometown

occupation

1 Kim-Joy 27 female female Leeds Mental health specialist
2 Manon LagrA”“ve 26 female female London Software project manager

Now store this newly created dataset into a new one, under a different name.

Note: In this example we have been saving all the new datasets that we are creating. This is
only done with the purpose of showing you the changes in the data after running the
functions. But if you are working with big datasets, this is not a very good idea, since your R

console will be populated with several datasets that are not being used.

gbbo_3<- left_join(gbbo_2, gbbo, by = c("names","age"))

4. rename()

Using rename function to change variable names. Here we are changing the variable
“hometown” to “city”

rename(gbbo_3, "city"="hometown")

Hit names age sex.Xx sex.y city occupation
#t 1 Kim-Joy 27 female female Leeds Mental health specialist
2 Manon LagrA”“ve 26 female female London Software project manager

5. summarise()

Here we will get some descriptive statistics using the summarise function from dplyr. This
function is only for continuous variables.

summarise(gbbo, mean(age))

mean(age)
1 36.5

summarise is very handy since it also allows us to save the summarised variable, you just
need to specify a name before the statistics asked

summarise(gbbo, mean_age=mean(age))

#H# mean_age
1 36.5

you can ask for more than one statistic and store them all
summarise(gbbo, mean_age=mean(age),
st.dev_age= sd(age),
median_age=median(age))

mean_age st.dev_age median_age
1 36.5 11.42963 31.5

6. group_by()
This function works by grouping according to a variable

group_by(gbbo, sex)

A tibble: 12 x 5
Groups: sex [2]

##

##

1
2
3
##t 4
5
##t 6
##t 7
8
9
10
11
12

names

<fct>

Antony Amourdoux
Briony Williams
Dan Beasley-Harling
Imelda McCarron
Jon Jenkins
Karen Wright
Kim-3Joy

Luke Thompson
Manon LagrA“ve
Rahul Mandal
Ruby Bhogal
Terry Hartill

age
<dbl>

30
33
36
33
47
60
27
30
26
30
30
56

sex
<fct>
male
female
male
female
male
female
female
male
female
male
female
male

hometown occupation

<fct> <fct>

London Banker

Bristol Full-time parent

London Full-time parent

County Tyrone Countryside recreation ~
Newport Blood courier

Wakefield In-store sampling assis~
Leeds Mental health specialist
Sheffield Civil servant/house and~
London Software project manager
Rotherham Research scientist
London Project manager

West Midlands Retired air steward

As you can see, group by does not seem to do anything. This is because it works in

combination with other functions, for instance: summarise.

Let’s save the group under a new dataset

bysex<-group_by(gbbo, sex)

And now, let’s use this new dataset to get an indicator of the average age by sex of the
participants.

summarise(bysex, age_mean=mean(age))

A tibble: 2 x 2
#i# sex age_mean
<fct> <dbl>
1 female 34.8
2 male 38.2

We have created a new aggregated variable age_mean that takes the mean of the variable
age according to sex.

Bonus (homework)

When you search for examples using dplyr on the web, you are very likely to encounter
this symbol %>% called “pipe”. We are not covering this in this tutorial, but we will just

give you and example of what it is and how to use it.

Pipes are meant to make the coding easy to write and read. It writes the code following a
logical set of instructions. This is an example of the last code we used, but now rewritten

with pipes

gbbo %>%

group_by(sex) %>%
summarise(age_mean=mean(age))

Take the data
Now group it by sex
Finally, we are creating our

aggregated variable, all of this in one go!

A tibble:

sex

H#it <fct>
1 female

2 male

You can try to rewrite the previous codes using pipes!

