The Challenges of Reproducible Research and Teaching it

Dr Chris Playford (University of Exeter)
Dr Roxanne Connelly (University of York)
Prof Vernon Gayle (University of Edinburgh)

Love Your Code, UKDS & ONS

14th February 2020 ONS London

Challenges of reproducible research

- Transparency:
 - The information we present in a manuscript should enable others to fully understand and reproduce what we have done
- Challenges
 - Data sharing / data citing
 - Research Code sharing
 - Identifying the code that produced the results presented
 - Complex data management
 - Good workflow among researchers (i.e. includes all steps taken sequentially)
- Examples of how we are trying to teach better practice
 - Learning from computer science see also <u>Playford et al. (2016)</u>
 - Using tools from research code-sharing. For example, see: <u>Connelly and Gayle (2019)</u> and supporting <u>Jupyter Notebook</u>

Examples of software used in research and teaching

- Literate programming / dynamic documents
 - Combining programming language with documentation language
 - Inline code

RMarkdown

- Decentralised version control
 - Platform for code sharing
 - Take a local copy of a text based file (e.g. research code)
 - Keep track of every change to a file

<u>GitHub</u>

1st Year Introduction to Social Data University of Exeter Q-step Centre

Interweaving code and outputs using RMarkdown

Variable	Description
year	election year
ANES	ANES estimated turnout rate
VEP	voting eligible population (in thousands)
VAP	voting age population (in thousands)
total	total ballots cast for highest office (in thousands)
felons	total ineligible felons (in thousands)
noncitizens	total non-citizens (in thousands)
overseas	total eligible overseas voters (in thousands)
osvoters	total ballots counted by overseas voters (in thousands)

EXERCISE 1

Load the data into R and check the dimensions of the data. Also, obtain a summary of the data. How many observations are there? What is the range of years covered in this data set?

STEPS:

Set file path

Load your data from GitHub:

Look at your data:

EXERCISE 1

Load the data into R and check the dimensions of the data. Also, obtain a summary of the data. How many observations are there? What is the range of years covered in this data set?

Load your data from GitHub:

```
# install.packages("RCurl")
# library(RCurl)
# x \leftarrow qetURL("https://raw.qithubusercontent.com/kosukeimai/qss/master/INTRO/turnout.csv")
\# turnout \leftarrow read.csv(text = x)
# Alternatively, there are simpler ways:
# use file location:
# turnout <- read.csv("C:/Users/pe247/Documents/Q-Step teaching/POL1008/lab1/turnout.csv")
turnout <- read.csv("turnout.csv")</pre>
Look at your data:
# Check out the dimensions of your data
dim(turnout)
## [1] 14 10
# Summary of the variables in the dataset
summary(turnout)
```

```
VEP
                                                     VAP
##
         X
                       year
   Min. : 1.00 Min.
                         :1980
                                       :159635
                                                Min.
                                                       :164445
                                Min.
   1st Qu.: 4.25 1st Qu.:1986
                                1st Qu.:171192
                                                1st Qu.:178930
   Median : 7.50 Median :1993
                                Median :181140
                                                Median :193018
   Mean: 7.50 Mean
                        :1993
                                Mean
                                       :182640
                                                Mean
                                                       :194226
   3rd Qu.:10.75
                  3rd Qu.:2000
                                3rd Qu.:193353
                                                3rd Qu.:209296
                         :2008
                                       :213314
                                                       :230872
   Max.
          :14.00
                  Max.
                                Max.
                                                Max.
```

2nd & 3rd Year Data Analysis in Social Science III University of Exeter Q-step Centre

Using GitHub classroom to share and mark assignments (Dr Alexey Bessudnov)

https://github.com/datan3-2020/datan3

Data Analysis 3: Week 6

https://github.com/datan3-2020/datan3/blob/master/cl ass6.md 1. Read the *indresp* file from Wave 8 and keep the following variables: pidp, derived sex and age, ethnic group (h_indresp), government office region (h_gor_dv), and net personal income (h_fimnnet_dv).

```
library(tidyverse)
Data8 <- read_tsv("data/UKDA-6614-tab/tab/ukhls_w8/h_indresp.tab")
Data8 <- Data8 %>%
  select(pidp, h_sex_dv, h_age_dv, h_gor_dv, h_fimnnet_dv)
```

For all charts use ggplot2. You may need to clean and recode variable before visualising.

We will start with univariate distributions.

1. Visualise the distribution of income with a histogram, a density plot and a box plot.

```
ggplot(Data8,
  aes(x = h_fimnnet_dv)) +
geom_histogram(binwidth = 100) +
xlim(-100, 5000) +
xlab("Net monthly personal income")
```


← Back to classrooms

Data analysis 3 class 2019

dataanalysis3

Assignments

Final report

Statistical assignment 1

Individual assignment

Invite link ▼

New assignment →

Statistical assignment 2

Individual assignment


```
78
      82
      83
79
      84
80
  $
           @@ -84,14 +88,14 @@ Now we want to filter the data keeping only respondents from the original UKHLS
84
            ```{r}
 90
 Long <- Long %>%
 filter(...) %>%
 mutate(sex dv = ...) %>%
 mutate(vote6 = ...)
 91 +
 filter(memorig == 1) %>%
 92 +
 mutate(dvage = ifelse(dvage > 0, dvage, NA)) %>%
 93 +
 mutate(sex_dv = ifelse(sex_dv == 1, "Male",
 94 +
 ifelse(sex_dv == 2, "Female", NA)))%>%
 95 +
 mutate(vote6 = ifelse(vote6 > 0, vote6, NA))
90
91
 - Long %>%
 - ...
 - Long %>%
94
 + Long%>%
 98 + count(sex_dv, vote6)
 abessudnov on Mar 13, 2019
 + 😐 …
 20/20
 Reply...
```

#### Reshape the data frame with summary statistics (20 points)

Your resulting data frame with the means is in the long format. Reshape it to the wide format. It should look like this:

sex_dv	а	b	С	d	е	f	g
female							
male							

In the cells of this table you should have mean political interest by sex and wave.

Write a short interpretation of your findings.

```
meanVote6 %>%
 gather(meanVote6, key = "variable", value = "value") %>%
 unite("variable", c("wave", "variable"), sep = "_") %>%
 spread(key = variable, value = value)
```

```
A tibble: 2 x 8
Groups: sex_dv [2]
 sex_dv a_meanVote6 b_meanVote6 c_meanVote6 d_meanVote6 e_meanVote6
 <dbl>
 <dbl>
 <chr>
 <dbl>
 <dbl>
 <dbl>
 2.84
 2.82
 2.87
 2.89
 2.87
1 Female
 2.53
2 Male
 2.51
 2.54
 2.55
 2.51
... with 2 more variables: f_meanVote6 <dbl>, g_meanVote6 <dbl>
```

```
Original coding: smaller values indicate stronger interest in politics. 1 = very, 2 = fairly, 3 = not very, 4 = # The general trend of political interest by wave remains the same for both female and male, which increased sligh # For each wave, males tend to be more interested in politics than female.
```

## Reflections

- Using dynamic documents (e.g. RMarkdown) is pretty straightforward if you are working with research code already
- Each time there is a break in the workflow, this presents opportunities for inconsistencies and error
  - Directly downloading data from an internet address is easiest
  - For data with higher levels of security, this isn't appropriate
  - Data citation and archiving really important
- Teaching social science students how to use GitHub requires patience and resources
  - You need really good teaching assistants
  - Students need good foundation in working with research code first
  - You are helping them to learn a very useful skill

# Acknowledgements

- University of Exeter Q-step Centre
  - Dr Alexey Bessudnov
  - Dr Patrick English



A step-change in quantitative social science skills

Funded by the Nuffield Foundation, ESRC and HEFCE

- <u>Dr Raluca Popp</u> (University of Kent)
- This work was supported by the Economic and Social Research Council [ES/R004978/1]