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The Problem e We are all aware that police recorded crime is deeply flawed

I'he Errors

The Impact — Under-reporting/under-detection of crime

Adjustments

— Recording inconsistencies across forces

Discussion

e Yet, we still use police recorded crime rates in our research
— Key variable to assess the causes and consequences of crime
— Multivariate models based on police data will likely be biased
e In this paper (and project) we seek to tackle this problem

— Identify the nature and prevalence of measurement error in
police data

— Illustrate the impact it has when used in regression models

— Suggest methods for its adjustment
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— Assuming the latter is a gold standard



n
UNIVERSITY OF LEEDS

; Measurement Error in Police Data
#)SDAI

I'he Problem

The Errors e We focus on crime counts/rates

The Impact
e — — We compare police data (data.police.uk) and CSEW estimates of
acquisitive crime at the Police Force Area level per year

Discussion

— Assuming the latter is a gold standard

e To estimate the prevalence of the measurement error first we
need to consider its form

— We can anticipate systematic (under-reporting/under-detection)
and random (inconsistencies across forces) errors

— And that these errors are multiplicative (proportional to the true
value)
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U [T e We focus on crime counts/rates
The Impact
e — — We compare police data (data.police.uk) and CSEW estimates of

acquisitive crime at the Police Force Area level per year

Discussion

— Assuming the latter is a gold standard

e To estimate the prevalence of the measurement error first we
need to consider its form

— We can anticipate systematic (under-reporting/under-detection)
and random (inconsistencies across forces) errors

— And that these errors are multiplicative (proportional to the true
value)

multiplicative error model: X* = X - U, where U ~ N(€ (0,1),0)
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I'he Problem

I'he Errors

The Impact e Let’s consider a simple linear model, where the explanatory
Adjustments variable is affected by measurement error

Y=a+B8X"+e

Discussion

e Using OLS we can estimate « and § solving the following
system of equations

a*=Y - BX*
A CcoU(XTY)
var(X*)
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Discussion var(X*)

1 Random noise in X™ doesn’t affect cov, but increases var —
attenuates the slope

2 Systematic multiplicative error will lead to a change of scale,
which affects the cov and especially var — the slope will be
biased; augmented if the errors are negative
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Impact on the Slope

Let’s focus on the slope since this is often what we are after
2 cov(XTY)
T war(X*)

Random noise in X™* doesn’t affect cov, but increases var —
attenuates the slope

Systematic multiplicative error will lead to a change of scale,
which affects the cov and especially var — the slope will be
biased; augmented if the errors are negative

Under-reporting will bias the slope upwards, while
inconsistencies across PFAs will push it downwards
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: — The errors in crime rates could affect bias the slopes of other
Adjustments variables included in the model
Do — Harder to trace out if using non-linear models

— And we have not even consider how it affects measures of
uncertainty too
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The Problem e Things become more complicated when we move away from
The Errors simple linear regression
The Impact . . :
A — The errors in crime rates could affect bias the slopes of other
e variables included in the model

Discussion

— Harder to trace out if using non-linear models
— And we have not even consider how it affects measures of

uncertainty too

e We need to employ adjustment methods

— Bayesian adjustments are a good option - very flexible
— We specify our outcome model of interest

— And a measurement model for the variable affected by
measurement error

— Based on the estimated validity and reliability of that variable
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Example of Impact and Adjustment

e We model the effect of acquisitive crime (X1) and population
density (X2) on the % of white population (V)

— We do that in three steps
e The - assumed - true model, using CSEW data
- Y=a+8X1+B2X2+¢€
e The naive model, using police data

- Y=a+5X]+BX2+e€
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fhe Problem We model the effect of acquisitive crime (X1) and population
The Errors density (X2) on the % of white population (V)

The Impact
— We do that in three steps

Adjustments

Piscussion e The - assumed - true model, using CSEW data

- Y=a+p1X1+6X2+¢€

The naive model, using police data
- Y=a+5X]+BX2+e€

e The Bayesian adjustment, using police data and what we know
about the validity and reliability of the measurement error

- Y=a+X1+62Xo+¢€
X1 = X7 U, where U ~ N(1/0.34,1/0.07)
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outcome variable: % white in the area

true model naive model adjusted model

constant 0.977
(0.013)
acquisitive crime —0.073
(0.029)
population density —0.003
(0.002)
observations 40 40 40
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justments outcome variable: % white in the area

Discussion true model naive model adjusted model
constant 0.977 0.976
(0.013) (0.012)
acquisitive crime —0.073 —0.276
(0.029) (0.095)
population density —0.003 —0.003
(0.002) (0.002)
observations 40 40 40
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I'he Problem
I'he Errors

The Impact

Adjustments 1 ] 3
justments outcome variable: % white in the area

Discussion true model naive model adjusted model
constant 0.977 0.976 0.976
(0.013) (0.012) (0.013)
acquisitive crime —0.073 —0.276 —0.081
(0.029) (0.095) (0.030)
population density —0.003 —0.003 —0.002
(0.002) (0.002) (0.002)
observations 40 40 40
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Discussion regression models

— The validity of much of the literature relying on such data is
under question

e Bayesian adjustments or similar can help

— Very flexible, can be used with any kind of outcome model, and
form of measurement error

— Can be used as a sensitivity tool when all we have is an educated
guess of the validity and reliability of police data
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Discussion

The type of measurement error observed in crime rates can be
defined as

— Multiplicative, with a strong negative systematic component,
normally distributed across police forces

These type of errors can lead to strong biases when used in
regression models

— The validity of much of the literature relying on such data is
under question

Bayesian adjustments or similar can help
— Very flexible, can be used with any kind of outcome model, and
form of measurement error

— Can be used as a sensitivity tool when all we have is an educated
guess of the validity and reliability of police data

Next steps

— Small area estimation, synthetic data, multi-trait multi-method
models

— http://recountingcrime.com


http://recountingcrime.com

	The Problem
	The Errors
	The Impact
	Adjustments
	Discussion

