

The Errors

The Impact

Adjustments

Discussion

Crime Surveys User Conference 2020

The impact of measurement error in police crime records

Recounting Crime

Jose Pina-Sánchez (University of Leeds) Ian Brunton-Smith (University of Surrey) David Buil-Gil (University of Manchester) Alexandru Cernat (University of Manchester)

The Problem

- The Errors
- The Impact
- Adjustments
- Discussion

- We are all aware that police recorded crime is deeply flawed
 - Under-reporting/under-detection of crime
 - Recording inconsistencies across forces

The Problem

- The Errors
- The Impact
- Adjustments
- Discussion

- We are all aware that police recorded crime is deeply flawed
 - Under-reporting/under-detection of crime
 - Recording inconsistencies across forces
- Yet, we still use police recorded crime rates in our research
 - Key variable to assess the causes and consequences of crime
 - Multivariate models based on police data will likely be biased

The Problem

- The Errors
- The Impact
- Adjustments
- Discussion

• We are all aware that police recorded crime is deeply flawed

- Under-reporting/under-detection of crime
- Recording inconsistencies across forces
- Yet, we still use police recorded crime rates in our research
 - Key variable to assess the causes and consequences of crime
 - Multivariate models based on police data will likely be biased
- In this paper (and project) we seek to tackle this problem
 - Identify the nature and prevalence of measurement error in police data
 - Illustrate the impact it has when used in regression models
 - Suggest methods for its adjustment

The Errors

The Impact

Adjustments

Discussion

Measurement Error in Police Data

- We focus on crime counts/rates
 - We compare police data (data.police.uk) and CSEW estimates of acquisitive crime at the Police Force Area level per year
 - Assuming the latter is a gold standard

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

- We focus on crime counts/rates
 - We compare police data (data.police.uk) and CSEW estimates of acquisitive crime at the Police Force Area level per year
 - Assuming the latter is a gold standard
- To estimate the prevalence of the measurement error first we need to consider its form
 - We can anticipate systematic (under-reporting/under-detection) and random (inconsistencies across forces) errors
 - And that these errors are multiplicative (proportional to the true value)

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

- We focus on crime counts/rates
 - We compare police data (data.police.uk) and CSEW estimates of acquisitive crime at the Police Force Area level per year
 - Assuming the latter is a gold standard
- To estimate the prevalence of the measurement error first we need to consider its form
 - We can anticipate systematic (under-reporting/under-detection) and random (inconsistencies across forces) errors
 - And that these errors are multiplicative (proportional to the true value)

multiplicative error model: $X^* = X \cdot U$, where $U \sim N(\in (0, 1), \sigma)$

The Errors

The Impact

Adjustments

Distribution of multiplicative errors (U=X*/X)

The Problem

The Errors

The Impact

Adjustments

Impact of Measurement Error

The Problem

The Errors

The Impact

Adjustments

Discussion

• Let's consider a simple linear model, where the explanatory variable is affected by measurement error

 $Y = \alpha + \beta X^* + \epsilon$

The Errors

The Impact

Adjustments

Discussion

• Let's consider a simple linear model, where the explanatory variable is affected by measurement error

$$Y = \alpha + \beta X^* + \epsilon$$

Impact of Measurement Error

• Using OLS we can estimate α and β solving the following system of equations

$$\hat{\alpha}^* = \bar{Y} - \hat{\beta}\bar{X}^*$$
$$\hat{\beta}^* = \frac{cov(X^*Y)}{var(X^*)}$$

The Errors

The Impact

Adjustments

Discussion

• Let's focus on the slope since this is often what we are after

Impact on the Slope

$$\hat{\beta}^* = \frac{cov(X^*Y)}{var(X^*)}$$

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

Impact on the Slope

• Let's focus on the slope since this is often what we are after

$$\hat{\beta}^* = \frac{cov(X^*Y)}{var(X^*)}$$

 \blacksquare Random noise in X^* doesn't affect cov, but increases $var \rightarrow$ attenuates the slope

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

• Let's focus on the slope since this is often what we are after

Impact on the Slope

$$\hat{\beta}^* = \frac{cov(X^*Y)}{var(X^*)}$$

- \blacksquare Random noise in X^* doesn't affect cov, but increases $var \rightarrow$ attenuates the slope
- 2 Systematic multiplicative error will lead to a change of scale, which affects the cov and especially $var \rightarrow$ the slope will be biased; augmented if the errors are negative

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

• Let's focus on the slope since this is often what we are after

Impact on the Slope

$$\hat{\beta}^* = \frac{cov(X^*Y)}{var(X^*)}$$

- \blacksquare Random noise in X^* doesn't affect cov, but increases $var \rightarrow$ attenuates the slope
- 2 Systematic multiplicative error will lead to a change of scale, which affects the cov and especially $var \rightarrow$ the slope will be biased; augmented if the errors are negative
- Under-reporting will bias the slope upwards, while inconsistencies across PFAs will push it downwards

Adjustments

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

- Things become more complicated when we move away from simple linear regression
 - The errors in crime rates could affect bias the slopes of other variables included in the model
 - Harder to trace out if using non-linear models
 - And we have not even consider how it affects measures of uncertainty too

Adjustments

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

- Things become more complicated when we move away from simple linear regression
 - The errors in crime rates could affect bias the slopes of other variables included in the model
 - Harder to trace out if using non-linear models
 - And we have not even consider how it affects measures of uncertainty too
- We need to employ adjustment methods
 - Bayesian adjustments are a good option very flexible
 - We specify our outcome model of interest
 - And a measurement model for the variable affected by measurement error
 - Based on the estimated validity and reliability of that variable

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

- We model the effect of acquisitive crime (X_1) and population density (X_2) on the % of white population (Y)
 - $-\,$ We do that in three steps

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

- We model the effect of acquisitive crime (X_1) and population density (X_2) on the % of white population (Y)
 - We do that in three steps
- The assumed true model, using CSEW data
 - $-Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \epsilon$

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

- We model the effect of acquisitive crime (X_1) and population density (X_2) on the % of white population (Y)
 - $-\,$ We do that in three steps
- $\bullet\,$ The assumed true model, using CSEW data
 - $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \epsilon$
- The naive model, using police data
 - $-Y = \alpha + \beta_1 X_1^* + \beta_2 X_2 + \epsilon$

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

- We model the effect of acquisitive crime (X_1) and population density (X_2) on the % of white population (Y)
 - We do that in three steps
- The assumed true model, using CSEW data

 $- Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \epsilon$

• The naive model, using police data

 $-Y = \alpha + \beta_1 X_1^* + \beta_2 X_2 + \epsilon$

• The Bayesian adjustment, using police data and what we know about the validity and reliability of the measurement error

$$- Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

$$X_1 = X_1^* \cdot U, \text{ where } U \sim N(1/0.34, 1/0.07)$$

The Problem The Errors The Impact Adjustments Discussion

Example Using CSEW and Police Data

	outcome variable: % white in the area			
	true model naive model		adjusted mode	
constant	0.977			
	(0.013)			
acquisitive crime	-0.073			
	(0.029)			
population density	-0.003			
	(0.002)			
observations	40	40	40	

Example Using CSEW and Police Data

Т	he	P	ro	Ъl	en	0
-		-				

The Errors

The Impact

Adjustments

	outcome variable: % white in the area		
	true model	naive model	adjusted model
constant	0.977	0.976	
	(0.013)	(0.012)	
acquisitive crime	-0.073	-0.276	
	(0.029)	(0.095)	
population density	-0.003	-0.003	
	(0.002)	(0.002)	
observations	40	40	40

Example Using CSEW and Police Data

The	Problem
The	Errors

The Impact

Adjustments

	outcome variable: % white in the area		
	true model	naive model	adjusted model
constant	0.977	0.976	0.976
	(0.013)	(0.012)	(0.013)
acquisitive crime	-0.073	-0.276	-0.081
	(0.029)	(0.095)	(0.030)
population density	-0.003	-0.003	-0.002
	(0.002)	(0.002)	(0.002)
observations	40	40	40

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

Discussion

 Multiplicative, with a strong negative systematic component, normally distributed across police forces

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

- Multiplicative, with a strong negative systematic component, normally distributed across police forces
- These type of errors can lead to strong biases when used in regression models
 - The validity of much of the literature relying on such data is under question

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

Discussion

- Multiplicative, with a strong negative systematic component, normally distributed across police forces
- These type of errors can lead to strong biases when used in regression models
 - The validity of much of the literature relying on such data is under question
- Bayesian adjustments or similar can help
 - Very flexible, can be used with any kind of outcome model, and form of measurement error
 - Can be used as a sensitivity tool when all we have is an educated guess of the validity and reliability of police data

10 - 10

- The Problem
- The Errors
- The Impact
- Adjustments
- Discussion

- Multiplicative, with a strong negative systematic component, normally distributed across police forces
- These type of errors can lead to strong biases when used in regression models
 - The validity of much of the literature relying on such data is under question
- Bayesian adjustments or similar can help
 - Very flexible, can be used with any kind of outcome model, and form of measurement error
 - Can be used as a sensitivity tool when all we have is an educated guess of the validity and reliability of police data
- $\bullet~{\rm Next~steps}$
 - Small area estimation, synthetic data, multi-trait multi-method models
 - http://recountingcrime.com