Long-term trends in part-time work

Rachel Scarfe, University of Edinburgh
rscarfe@ed.ac.uk

2 February 2023

Motivation

Part I: Key facts about trends in part-time work

- Fact 1 Increase in the quantity of PT work
- Fact 2 Increase in the relative price of PT work

Part II: Model incorporating part-time work

- 'Task-based' approach
- Coexistence of full- and part-time jobs in equilibrium
- Convex hours-earnings relationship in equilibrium

Motivation

Part I: Key facts about trends in part-time work

- Fact 1 Increase in the quantity of PT work
- Fact 2 Increase in the relative price of PT work

Part II: Model incorporating part-time work

- 'Task-based' approach
- Coexistence of full- and part-time jobs in equilibrium
- Convex hours-earnings relationship in equilibrium

Why is this important?

- Theoretical: non-linear hours-earnings profile
- Policy: inequality in hours

Empirical investigation

- Quarterly Labour Force Survey
- Long-term data on hours and earnings - cover the whole business cycle
- Individual characteristics - selection in PT/FT work
- Key variables:
- TTUSHR: Total usual hours worked in main job (including overtime)
- GRSSWK: Gross weekly pay in main job
- Sample selection:
- Part-time if working <31 hours a week
- Age between 16 and 64
- Working between 5 and 70 hours a week

Fact 1 Increase in the quantity of PT work

Increase in PT work in some segments of the labour force

- before GFC - growth in the \% of employed men with main job PT (PT share), offsets declining female PT share
- after GFC - sharp growth in the PT share of both genders

Figure 1: Part-time workers (as \% of working population)

Fact 1 Increase in the quantity of PT work

Conditional on working PT, weekly hours have increased

- PT workers are doing more hours than previously
- the share of total working hours done by PT workers has increased

Figure 2: Distribution of PT workers by usual weekly working hours

1-10 hours per week

11-20 hours per week Source: LFS

21-30 hours per week

Fact 1 Increase in the quantity of PT work

Overall, more work is being done by PT workers

- the share of total working hours done by PT workers has increased
- increase in 'PT share of all hours' from 17% in 1994 to 22% in 2013

Figure 3: Distribution of PT workers by usual weekly working hours

Fact 2 Changing (relative) price of part-time work

Part-time pay penalty has decreased

$$
\log w_{i t}=\beta_{t} P T_{i t}+\epsilon_{i t}
$$

Figure 4: Trend in the part-time pay penalty

Source: LFS
Unadjusted

Fact 2 Changing (relative) price of part-time work

Part-time pay penalty has decreased

$$
\log w_{i t}=\beta_{t} P T_{i t}+X_{i t} \gamma+\epsilon_{i t}
$$

Figure 4: Trend in the part-time pay penalty

Unadjusted

Adjusted for worker and job characteristics Source: LFS

Fact 2 Changing (relative) price of part-time work

Non-linear hours-earnings relationship

- Doesn't change much over time

$$
\log e_{i t}=\sum_{h \in H} \beta_{h} d_{i h}+\epsilon_{i t} \quad ; \quad h \in H=\{5,10,15, \ldots ., 70\}
$$

Figure 5: Cross-sectional hours-earnings profile

Unadjusted
Source: LFS

Fact 2 Changing (relative) price of part-time work

Non-linear hours-earnings relationship

- Doesn't change much over time

$$
\log e_{i t}=\sum_{h \in H} \beta_{h} d_{i h}+X_{i t}+\epsilon_{i t} \quad ; \quad h \in H=\{5,10,15, \ldots, 70\}
$$

Figure 5: Cross-sectional hours-earnings profile

Unadjusted

Adjusted for worker and job characteristics

Further empirical work

- PT work very concentrated in certain industries/occupations
- Hospitality, service
- Lower occupational skill requirements (Hirsch, 2005)
- Question: Is this related to different tasks?
- Fewer communicating, co-ordinating, analysing tasks?
- More caring, interacting directly with customers tasks?
- Analysis of PT/FT tasks
- link LFS data to O*NET task requirements
- investigate which tasks can predict the PT share within an occupation
- investigate which tasks are associated with a higher part-time pay penalty

Research questions

Aim of this model: a neoclassical model incorporating PT work in a flexible way, explaining

- workers' and firms' preferences for FT/PT work
- the higher hourly wage of FT relative to PT workers

Disentangle the causes of changes in relative quantity and price of PT work

- changes in worker preferences?
- changes in firm technology?

Overview

Output $=$ combination of output from 2 occupations with different tasks

- "Simple" occupation: all tasks the same length
- "Complex" occupation: tasks have uncertain length

Equilibrium

Equilibrium earnings as a function of hours

Equilibrium earnings as a function of hours

Conclusion

- Long term increase in both quantity and relative price of PT work
- Trends are more pronounced for men
- Created a model that replicates
- part-time pay penalty/non-linear hours-earnings schedule
- occupational sorting of FT/PT workers
- Extensions to empirical work
- investigate differences in FT/PT tasks
- Extensions to model
- individual productivity - allows people to work long hours in low-pay occupations
- gender differences in preferences

Extra material: Model

Previous approaches

- Bick, Blandin, Rogerson (2020) ; Erosa, Fuster, Kambourov and Rogerson (2018)
- Assume earnings convex in hours
- Yurdagel (2018); Battisti et al. (2021)
- Complementarities between individual workers
- Lariau (2018) ; Kang et al. (2020)
- CES function with FT and PT work

Set up:

- Measure one of workers indexed by $i \in[0,1]$
- Representative firm produces using occupations indexed by $j \in\{1, \ldots, J\}$
- Workers must choose which occupation. Expected production in occupation j is $E\left[y_{j}(h)\right]$
- Measure $m_{h j}$ work in occupation j for $h \in[0, H]$ hours
- Total output

$$
\begin{aligned}
Y & =\Gamma\left(\sum_{j=1}^{J} A_{j} Y_{j}^{\rho}\right)^{\frac{1}{\rho}} \\
Y_{j} & =\int_{0}^{H} E\left[y_{j}(h)\right] m_{h j} d h
\end{aligned}
$$

Set up:

- Representative firm's problem

$$
\begin{array}{r}
\max _{\left\{m_{h j}\right\}, h \in[0, H], j=1, \ldots, J} E[Y]-\sum_{j=0}^{J} \int_{0}^{H} e_{j}(h) m_{h j} d h \\
\text { s.t } \quad Y=\Gamma\left(\sum_{j=1}^{J} A_{j} Y_{j}^{\rho}\right)^{\frac{1}{\rho}}
\end{array}
$$

- In a competitive market, with perfect substitution $(\rho=1)$

$$
e_{j}(h)=\Gamma A_{j} E\left[y_{j}(h)\right]
$$

Occupations and tasks

- Tasks arrive at Poisson rate λ
- Length of each task, $x \in[0, H]$, drawn from a distribution $G_{j}(x)$
- Production equal to the number of tasks completed by the end of the period
- Expected individual production for someone working h hours

$$
E\left[y_{j}(h)\right]=\lambda \int_{0}^{h} G_{j}(x) d x
$$

Occupations and tasks

Occupations and tasks

- With Reverse Pareto distribution of task lengths, $G_{j}(x)=\left(\frac{x}{H}\right)^{\alpha_{j}}, \quad \alpha_{j}>0$

$$
E\left[y_{j}(h)\right]=\lambda \frac{h^{\alpha_{j}+1}}{H^{\alpha_{j}}\left(\alpha_{j}+1\right)}
$$

- With $\alpha_{j} \rightarrow 0, E\left[y_{j}(h)\right] \rightarrow \lambda h$

Set up: Workers

1. Choose optimal hours for each occupation h_{j} given disutility of labour $\phi_{i} \in\left[\phi_{\min }, \phi_{\max }\right]$ with distribution $H(\phi)$
2. Choose occupation

$$
\left.\max _{j \in[1, \ldots, J]}\left\{U_{j}\left(h_{j}\right)\right)\right\} \quad \text { s.t. } \quad U_{j}\left(h_{j}\right)=\max _{h_{c}} z_{i j} e_{j}\left(h_{j}\right)-\frac{\phi_{i} h_{j}^{1+\theta}}{1+\theta}
$$

- Equate the marginal disutility of work to marginal earnings in task j
- Workers sort into occupations based on $\phi_{i}, z_{i j}$

$$
h_{j}^{*}=\left(\frac{z_{i j} e_{j}^{\prime}(h)}{\phi_{i}}\right)^{\frac{1}{\theta}}
$$

Example

- Two occupations with $\alpha_{1}>0, \alpha_{1} \rightarrow 0$ and $A_{1}>A_{2}$
- $z_{i j}=1$ for all workers in all occupations
- Equilibrium consists of earnings functions $e_{1}(h), e_{2}(h)$, allocation $m_{h 1}, m_{h 2}$

1. firms solve the profit maximisation problem
2. workers solve the utility maximisation problem
3. the market for labour clears

- Proposition

1. In equilibrium, there exists \hat{h} where $e_{1}(\hat{h})=e_{2}(\hat{h})$. For $h<\hat{h}, e_{1}(\hat{h})<e_{2}(\hat{h})$ and for $h>\hat{h}, e_{1}(\hat{h})>e_{2}(\hat{h})$

$$
\begin{aligned}
& e_{1}(h)=\Gamma \lambda A_{1} \frac{h^{\alpha_{1}+1}}{H^{\alpha_{1}}\left(\alpha_{1}+1\right)} \\
& e_{2}(h)=\Gamma \lambda A_{2} h
\end{aligned}
$$

Figure 6: Equilibrium earnings as a function of hours

Example

- Two occupations with $\alpha_{1}>0, \alpha_{1} \rightarrow 0$ and $A_{1}>A_{2}$
- Equilibrium consists of earnings functions $e_{1}(h), e_{2}(h)$, allocation $m_{h 1}, m_{h 2}$

1. firms solve the profit maximisation problem
2. workers solve the utility maximisation problem
3. the market for labour clears

- Proposition

1. In equilibrium, there exists \hat{h} where $e_{1}(\hat{h})=e_{2}(\hat{h})$. For $h<\hat{h}, e_{1}(\hat{h})<e_{2}(\hat{h})$ and for $h>\hat{h}, e_{1}(\hat{h})>e_{2}(\hat{h})$
2. Workers with low ϕ choose Occupation 1, workers with high ϕ choose Occupation 2
3. If $H(\phi)$ is continuous, there is a worker with $\phi \in\left[\phi_{\min }, \phi_{\max }\right]$ that is indifferent between the occupations

Proposition Part 2

$$
P T P P=\frac{e_{1}(h) / h}{e_{2}(h) / h}=\frac{A_{1} h_{1}^{\alpha}}{A_{2} H_{1}^{\alpha}\left(\alpha_{1}+1\right)}
$$

Figure 7: Utility indifference curves

Proposition Part 3
 Sorting

- $h_{2}^{*}<\hat{h}$: choose occupation 2 for h_{2}^{*} hours
- $h_{2}^{*}>\hat{h}$ and $h_{1}^{*}>H$: choose occupation 1 for H hours
- $h_{2}^{*}>\hat{h}$ and $\hat{h}<h_{1}^{*}<H$: choose occupation 2 for h_{1}^{*} hours

Figure 8: Utility indifference curve of a worker indifferent between occupations

Calibration

Changes in parameters govern the relative quantity and price of PT/FT work

- Worker preferences \rightarrow changing $G(\phi)$
- different for men/women?
- Firm technology \rightarrow changing $\alpha, \rho(?)$
- relative productivity and substitutability of PT/FT work
- Aggregate productivity \rightarrow changing Γ

Next step: calibration of parameters

- Need a way to separately identify 'supply' and 'demand' parameters

Derivation of expected production

- $E[y(h)]$ - expected production for working h hours
- $N(h)$ - number of tasks that arrive in working week
- $y_{k}(h)$ - production from the k-th task, $k=1, \ldots N(h)$
- T_{i} - arrival time of k-th task

$$
\begin{aligned}
E[y(h)] & =\sum_{n=0}^{\infty} E[y(h) \mid N(h)=n] P(N(h)=n) \\
& =\sum_{n=0}^{\infty} E\left[\sum_{k=0}^{n} y_{k}(h) \mid N(h)=n\right] P(N(h)=n) \\
& =E\left[\sum_{n=0}^{\infty} \sum_{k=0}^{n} E\left[y_{k}(h)\right] P(N(h)=n)\right.
\end{aligned}
$$

Derivation of expected production

T_{i} is a uniform random variable on the interval $[0, h]$

$$
\begin{aligned}
E\left[y_{k}(h)\right] & =\int_{0}^{h} E\left[y_{k}(h) \mid T_{i}=x\right] \frac{1}{h} d x \\
& =\frac{1}{h} \int_{0}^{h} G(h-x) d x \\
& =\frac{1}{h} \int_{0}^{h} G(u) d u
\end{aligned}
$$

Expected production is

$$
\begin{aligned}
E[y(h)] & =\frac{1}{h} \int_{0}^{h} G(u) d u \sum_{n=0}^{\infty} P(N(h)=n) \\
& =\frac{1}{h} \int_{0}^{h} G(u) d u E[N(h)] \\
& =\lambda \frac{h^{\alpha+1}}{H^{\alpha}(\alpha+1)}
\end{aligned}
$$

Extra material: Motivating facts

Bunching at FT hours

Figure 9: Weekly hours

Benefits schedule

Figure 10: Weekly income for a single parent with 1 child (2020)

Source: Resolution Foundation micro-simulation model

Source: Resolution Foundation

