

# Building a synthetic population to assess the health impacts of local climate change policies in England

**Andrea Serna-Castano and Eleonora Fichera** 

#### **Context**

- Links between environmental determinants and health
- approx. 24% of all deaths are attributable to preventable environmental risks (WHO, 2024)
- Equity dimension:

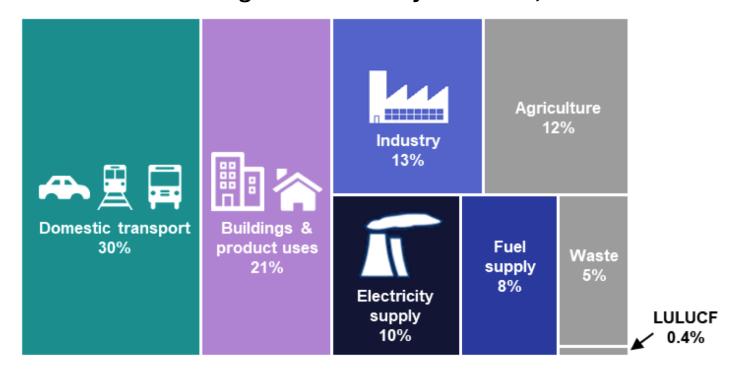
"The top 10% wealthiest individuals contribute 6.5 times more to global warming than the average person" (Callahan, 2025).





#### Context

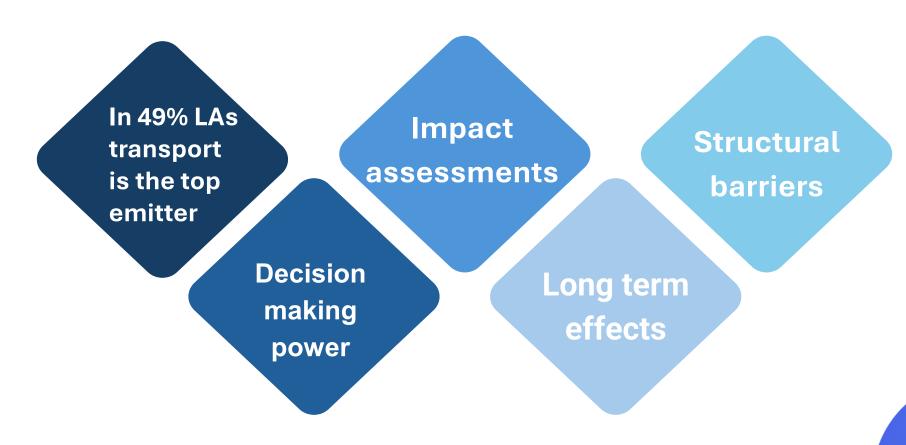
#### Greenhouse gas emissions by sector UK, 2024



According to the Net Zero Strategy, 82% of emissions are within the scope of local authorities.



# **Local Authority Roles and Challenges**





# **Enabling Data-Driven Local Action with Synthetic Data**









### **Objective**

# To build a synthetic population that can serve as the basis to assess health impacts of local climate change policies

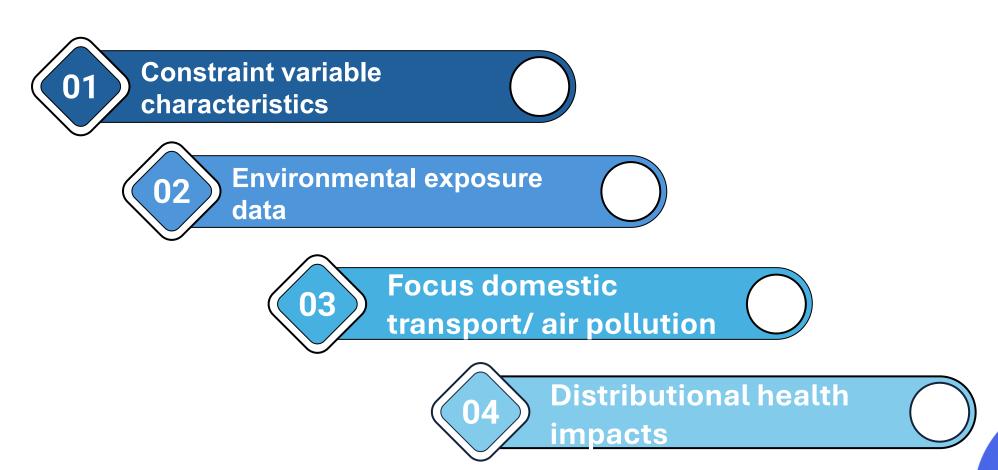
- 1. Determine what are the characteristics of a constraint variable that lead to a better-performing synthetic population
- 2. Evaluate the ability of different constraint sets to reproduce spatial patterns in health-relevant variables.
- 3. Compare the spatial alignment of health outcomes and environmental exposures.



# Previous synthetic populations

| Reference                         | Topic                    | Year | Area          | Unit of<br>analysis       | Source of survey data                                                                                                                                                 | Variables included                                                                                                                                 | Model used                                                            |
|-----------------------------------|--------------------------|------|---------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Wu et al.,<br>2022                | Socioeconomic/<br>health | 2018 | Great Britair | Households<br>individuals | Census, understanding society                                                                                                                                         | sex, age, economic activity, highest<br>educational qualifcation, marital<br>status, ethnic group, composition of<br>household, and housing tenure | Simulated annealing                                                   |
| Salat et al.,<br>2023             | Circadian<br>activities  | 2020 | England       | Individuals               | Census, Health Survey for<br>England Time Use Survey,<br>salary data, Trips to schools<br>and retail, Google mobility<br>reports, OpenStreetMap<br>building footprint | Demographic, economic, social and health                                                                                                           | Use of previous population SPENSER                                    |
| Prédhumeau<br>and Manley,<br>2023 | Socioeconomic            | 2030 | Canada        | Households<br>individuals | 2016 census data and 2018 population projections                                                                                                                      | age, sex, income,<br>education level, employment status,<br>household size,                                                                        | Synthetic<br>reconstruction with<br>Iterative Proportional<br>Fitting |
| Ton et al.,<br>2024               | Socioeconomic/<br>health | 2015 | Global        | Households<br>individuals | Microdata from the<br>Luxembourg Income Study<br>(LIS) and Demographic and<br>Health Survey (DHS)                                                                     | age, education, gender, income/wealth, settlement type (urban/rural), household size, household type                                               | Iterative proportional<br>updating                                    |

#### **Our Contribution**





# What is a synthetic population

- Synthetic populations have been around since the 1990s
- Artificially generated microdata
- Most methodologies generate microdata at the level of individuals from surveys by matching it to population-level constraints from the census
- We adopted combinatorial optimisation with simulated annealing following comparative studies (Ryan et al., 2009; Harland et al., 2012; Duran-Heras et al., 2018)



# Ingredients of a synthetic population

Geographic boundaries

Data sources

**Constraint** variables

Method

**Outcome** variables

Validity measures



Geographic boundaries

England

Population over16 years old





#### **Data Sources**

- 2021 Census for England
- Wave 14 of Understanding Society (USoc)
- Nitrogen dioxides (NO2) concentration data from Defra's Modelling of Ambient Air Quality (MAAQ)



# **Constraint variables**

| Topic         | Variable                       | Categories                                                                                                               |  |  |  |
|---------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
|               | Sex                            | F, M                                                                                                                     |  |  |  |
| Demography    | Age                            | 16–19, 20–24, 25–34, 35–49, 50–64, 65–74, 75–84, 85+                                                                     |  |  |  |
| Ethnic group  | Ethnic group                   | white, mixed, asian, black, other                                                                                        |  |  |  |
| Education     | Highest level of qualification | level 4 and above, level 3, level 1 to 2, none                                                                           |  |  |  |
| Labour market | Economic activity status       | self-employed, in paid employment,<br>unemployed, retired, other, looking afte<br>home, student, long term sick disabled |  |  |  |
| Health        | General health                 | very good, good, fair, poor                                                                                              |  |  |  |
| Climate risk  | Air pollution                  | Exposed, unexposed                                                                                                       |  |  |  |



# Outline of synthetic populations

```
SP
     Topic combination
     Demography
SP2 Demography + Ethnic group
     Demography + Ethnic group + Education
     Demography + Ethnic group + Education + Labour market
     Demography + Ethnic group + Education + Labour market + Health
     Demography + Ethnic group + Education + Labour market + Health +
SP6 Climate risk
```



#### **Method**

# Flexible Modelling Framework

(Harland et al., 2013)

#### Goodness-of-Fit Metric •

Overall Relative Sum of Squared Z-scores (Voas & Williamson, 2001)



Individuals to be cloned multiple times, supporting flexibility in matching areaspecific population sizes.

Iterative Swapping
Procedure

to improve the fit, retaining changes only if they enhance alignment with constraint distributions.



### **Outcome variables**

| Variable | Question label                                                            |
|----------|---------------------------------------------------------------------------|
| hcond1   | Diagnosed health conditions: Asthma                                       |
| hcond11  | Diagnosed health conditions: Chronic bronchitis                           |
| hcond13  | Diagnosed health conditions: Cancer or malignancy                         |
| hcond14  | Diagnosed health conditions: Diabetes                                     |
| hcond21  | Diagnosed health conditions: COPD (Chronic Obstructive Pulmonary Disease) |
| hcond27  | Diagnosed health conditions: Lung cancer                                  |
| hcond3   | Diagnosed health conditions: Congestive heart failure                     |
|          | Diagnosed health conditions: Coronary heart disease                       |
| hcond4   |                                                                           |
|          | Diagnosed health conditions: Angina                                       |
| hcond5   |                                                                           |
|          | Diagnosed health conditions: Heart attack or myocardial infarction        |
| hcond6   |                                                                           |
|          | Diagnosed health conditions: Stroke                                       |
| hcond7   |                                                                           |



# Validity measures

#### **Internal validity:**

Percentage of classification error (Duran-Heras et al., 2018)

$$\%CE_i^{M-dim} = \frac{\sum_{c_{1=1...}}^{c_1} \sum_{c_{M=1}}^{c_M} |o_{ic_1...c_M} - e_{ic_1...c_M}|}{2N_i} * 100$$

#### **External validity:**

Compare the value of the outcome variables which are the health conditions with respect external datasets e.g. the asthma prevalence at the LSOA level



#### **Results:**

#### Mean percentage of classification error

| SP  | Survey sample | Mean % CE<br>Included variables | Mean % CE<br>All variables |
|-----|---------------|---------------------------------|----------------------------|
| SP1 | 28086         | 6.05                            | 16.45                      |
| SP2 | 27930         | 6.98                            | 14.68                      |
| SP3 | 27056         | 5.53                            | 12.25                      |
| SP4 | 26964         | 4.85                            | 10.86                      |
| SP5 | 26487         | 5.44                            | 10.09                      |
| SP6 | 26487         | 4.66                            | 4.66                       |



#### Results:

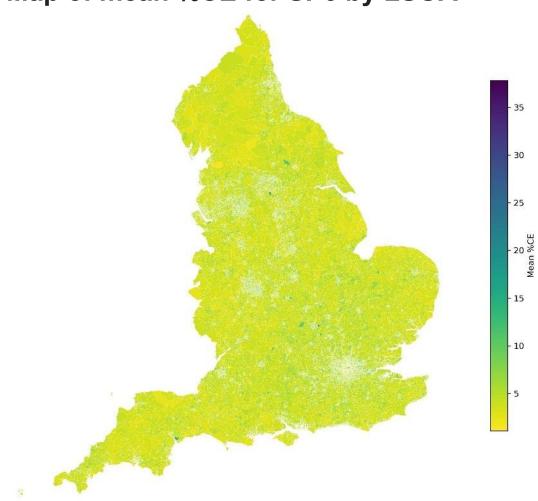
Mean percentage of classification error by variable

| Variable                       | SP1   | SP2   | SP3   | SP4   | SP5   | SP6  | % Change |
|--------------------------------|-------|-------|-------|-------|-------|------|----------|
| Sex                            | 8.85  | 8.85  | 8.85  | 8.85  | 8.85  | 8.85 | 0%       |
| Age                            | 3.23  | 3.23  | 3.23  | 3.23  | 3.23  | 3.23 | 0%       |
| Ethnic group                   | 19.52 | 8.84  | 8.84  | 8.84  | 8.84  | 8.84 | -54.71%  |
| Highest level of qualification | 18.91 | 19.04 | 1.18  | 1.18  | 1.18  | 1.18 | -93.80%  |
| Economic activity status       | 11.66 | 11.48 | 11.13 | 2.15  | 2.15  | 2.15 | -80.68%  |
| General health                 | 13.29 | 13.05 | 14.52 | 13.81 | 8.35  | 8.35 | -39.53%  |
| Air pollution                  | 39.67 | 38.30 | 37.95 | 37.97 | 38.04 | 0.00 | -100%    |



# Results:

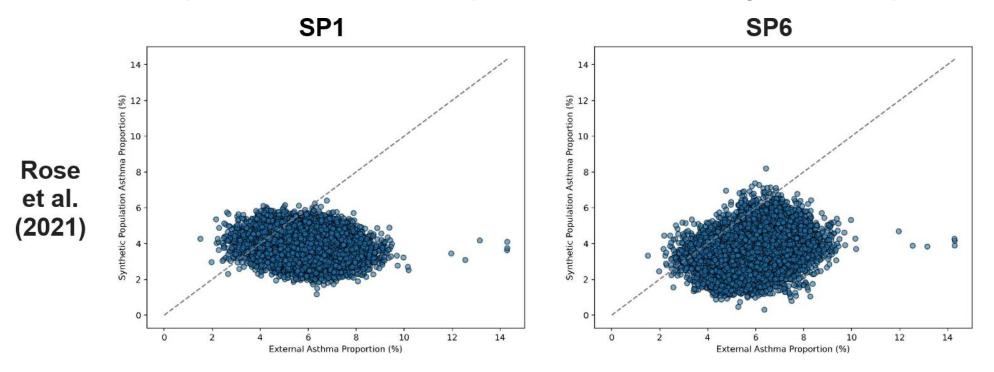






# **External validity**

Comparison of Asthma Proportion: External vs Synthetic Population





#### Conclusion

 Gap in literature: constraint variable selection is often based on data availability

#### Internal validity

- improves with sequential constraint addition, greatest gains from education and economic activity. General health slightly reduced model fit.
- · Adding constraints did not reduce accuracy of earlier variables.

#### External Validity

- SP6 (most detailed model) improved fit across LSOAs, reducing higherror zones.
- Asthma estimates saw only marginal external improvement Suggests need for better-aligned health constraints or richer health data.



# **Next steps**

- Add more variables including environmental risks (e.g. flooding, heatwaves).
- Strengthen validation using linked datasets with joint health distributions (e.g. Health Episode Statistics).
- Integrate into dynamic microsimulation for long-term policy evaluation.
- Goal: support robust, equitable, and policy-relevant climatehealth assessments.



### **Acknowledgements**

This work was supported by UK Research and Innovation funding for "Local Health and Global Profits" (Grant no MR/Y030753/1) which is part of Population Health Improvement UK (PHI UK).







# Thank you