Teaching resource: 1970 British Cohort Study Malaise Inventory

Introducing quantitative analysis using SPSS
Table of contents

- Introduction .. 3
- Purpose of this resource ... 3
- Accessing the data ... 3
- Introduction to the data .. 4
- Background to the Malaise Inventory .. 4
- Questions ... 5
- Exercises ... 8
 - Exercise 1 – Frequencies ... 8
 - Exercise 2 – Means .. 9
 - Exercise 3 – Crosstabs .. 10
 - Exercise 4 – Constructing summary scores .. 13
 - Exercise 5 – Recoding continuous variables .. 18
 - Exercise 6 – Correlations between scores ... 21
 - Exercise 7 – Linear regression .. 23
 - Exercise 8 – Logistic regression .. 26
- Reference category .. 26
- References .. 30
- Acknowledgements .. 32
Introduction

The Centre for Longitudinal Studies (CLS) - funded under the ESRC Researcher Development Initiative - has created a set of teaching datasets and associated resources based on the National Child Development Study (NCDS) and the 1970 British Cohort Study (BCS70).

The UK Data Service has converted part of the resource, exercises on measuring signs of psychological distress or depression in teenagers and adults using the BCS70, into an online step-by-step guide which can be used in conjunction with the data.

The guide includes information on how to access the data, an introduction to the established set of survey questions that measures psychological distress - the Malaise Inventory - and a number of data analysis exercises using SPSS.

Purpose of this resource

The data and resources are aimed for use with undergraduates and postgraduates and are designed to be used with SPSS (though the data are also made available in Stata and tab-delimited formats).

The resource can serve both as an introduction to the Malaise Inventory - an established scale to measure signs of psychological distress - and as an introduction to quantitative analysis using SPSS.

The techniques covered range from introductory descriptive statistics to multiple and logistic regression. The resource will probably work best where the students have some familiarity with the software package but not the techniques covered, or vice versa. However, no prior knowledge is assumed.

Accessing the data

The dataset to accompany this teaching resource needs to be downloaded from SN 5805 British Cohort Studies Teaching Dataset for Higher Education, 1958-2000.

This can be obtained by UK Data Service registered users and is subject to UK Access Management Federation (UKAMF) authentication. Further information on registration and login can be found on the Registration and FAQs help page.

Teachers wishing to share the data with students should follow the guidance on the Accessing and sharing data for teaching page.
Introduction to the data

The dataset which will be explored as part of this exercise is b034malaise.sav, a subset of data from the BCS70. This longitudinal dataset includes information allowing you to look at the relationship between socio-economic circumstances in childhood and mental well-being in adulthood over time. The file contains 135 variables, representing information collected from cohort members’ birth in 1970 up to 2004, when they had reached age 34.

Data collected:

- From birth are provided by the cohort members’ mothers.
- At age 5, age 10 and age 16 were collected from the mother (or father).
- At age 26, 30 and 34 the cohort member themselves provided the information.

There are:

- 18,732 cohort members in the dataset
- 9,740 (52 per cent) are men
- 8,984 (48 per cent) are women
- 8 did not have a sex recorded at their premature birth.

The number of cohort members answering at least one Malaise question were:

- 5,539 at age 16
- 8,968 at age 26
- 11,112 at age 30
- 9,598 at age 34
- 6,360 answered at least one Malaise question at age 26, 30 and 34
- 2,970 answered at least one Malaise question at age 16, 26, 30 and 34.

To enable the information included here to be cross-referenced with the original questionnaire documentation, original variable names are included in the variable label.

This file can also be merged with the b016mothermalaise.sav file to look at the relationship between a mother and her child’s mental well-being.

Background to the Malaise Inventory

At various ages from teenager to adulthood, BCS70 cohort members have completed the Malaise Inventory (Rutter et al., 1970) - a set of self-completion questions which combine to measure levels of psychological distress, or depression. The 24 ‘yes-no’ items of the inventory
cover emotional disturbance and associated physical symptoms. When administered in its standard format, scores range from 0 to 24.

The Malaise Inventory was itself developed from the Cornell Medical Index Health Questionnaire (CMI) which is comprised of 195 self-completion questions (Brodman et al., 1949, 1952). Fourteen of the 24 questions are taken directly from the CMI (Rutter et al., 1970). Individuals responding 'yes' to eight or more of the 24 items are considered to be at risk of depression (Rodgers et al., 1999). The internal consistency of the scale has been shown to be acceptable and validity of the inventory shown to hold in different socio-economic groups (Rodgers et al., 1999).

The scale has been used in both general population studies (McGee, Williams and Silva, 1986; Rutter and Madge, 1976; Rodgers et al., 1999) and in investigations of high-risk groups (Grant, Nolan and Ellis, 1990).

Rutter himself affirms that 'the inventory differentiates moderately well between individuals with and without psychiatric disorder' (Rutter et al., 1970, p160).

The individual questions and the ages they have been asked in the two cohorts are detailed in the next section.

Questions

In the BCS70, all 24 'yes-no' questions were asked in the standard way at age 26 and age 30 but at age 34, just 9 of the 24 questions were asked (again in the standard 'yes-no' format).

However, when BCS70 cohort members were aged 16 they were asked 22 of the 24 questions and a three answer category approach was adopted:

- 0='rarely/never'
- 1='some of the time'
- 2='most of the time'.

When questions are asked in the standard format:

- 1 point is awarded for every 'yes' response
- 0 points for every 'no' response.

An overall Malaise score for a cohort member is the sum across the individual variables, yielding a minimum score of 0 and a maximum of 24. A score of 8 or higher is considered to be a sign that the cohort member is experiencing symptoms associated with depression. When only 9 questions were included, a score of 4 or higher is considered to be a sign that the cohort member is experiencing symptoms associated with depression.
The overall Malaise score range for BCS70 cohort members at age 16 (when a three answer category approach was adopted) has a minimum of 0 and a maximum of 44. A score of 15 or higher is considered to be a sign that the cohort member is experiencing symptoms associated with depression.

Table 1: Age individual Malaise questions were asked in BCS70e

<table>
<thead>
<tr>
<th>Question</th>
<th>Age 16</th>
<th>Age 26</th>
<th>Age 30</th>
<th>Age 34</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Do you often have backache?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>2. Do you feel tired most of the time?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>3. Do you often feel depressed?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>4. Do you often have bad headaches?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>5. Do you often get worried about things?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>6. Do you usually have great difficulty in falling or staying asleep?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>7. Do you usually wake unnecessarily early in the morning?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>8. Do you wear yourself out worrying about your health?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>9. Do you often get into a violent rage?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>10. Do people annoy and irritate you?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>11. Have you at times had a twitching of the face, head or shoulders?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>12. Do you suddenly become scared for no good reason?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Questionnaire: Malaise Inventory

<table>
<thead>
<tr>
<th>Question</th>
<th>Age 16</th>
<th>Age 26</th>
<th>Age 30</th>
<th>Age 34</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Are you scared to be alone when there are not friends near you?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>14. Are you easily upset or irritated?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>15. Are you frightened of going out alone or of meeting people?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>16. Are you constantly keyed up and jittery?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>17. Do you suffer from indigestion?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>18. Do you suffer from an upset stomach?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>19. Is your appetite poor?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>20. Does every little thing get on your nerves and wear you out?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>21. Does your heart often race like mad?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>22. Do you often have bad pain in eyes?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>23. Are you troubled with rheumatism or fibrosis?</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>24. Have you ever had a nervous breakdown?</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Exercises

Exercise 1 – Frequencies

Question 1: How many cohort members were depressed in their thirties? Were more depressed at age 30 or age 34? (Hint: frequency of b30malg and b34malg variables).

Solution: From the Analyse drop-down menu select Descriptive Statistics and then Frequencies. Select b30malg b34malg and click on the right arrow button to move the two variables into the Variable(s) box. Click on OK.

Using syntax: If PASTE is selected instead of OK, a syntax window will open and the following syntax command will appear in it. Highlight the syntax and then click on the right arrow button on the toolbar to run the command.

```
FREQUENCIES
VARIABLES=b30malg b34malg
ORDER= ANALYSIS.
```
Exercise 2 – Means

Question 2: Do men or women have higher mean malaise scores in adulthood? Is the mean score consistently higher for men or women at age 26, 30 and 34? (Hint: Means of b26mal b30mal b34mal by bsex).

Solution: From the Analyse drop-down menu select Compare Means and then Means.

Click on b26mal and then b30mal and b34mal and move the variables via the right arrow button into the Dependent list box. Click on bsex and move into the Independent list box. Click on OK.
Using syntax: If PASTE is selected instead of OK, a syntax window will open and the following syntax command will appear in it. Highlight the syntax and then click on the right arrow button on the toolbar to run the command.

```
MEANS
   TABLES=b26mal b30mal b34mal By bsex
   /CELLS MEAN COUNT STDDEV.
```

Exercise 3 – Crosstabs

Question 3: Were cohort members with a low birth weight (<2515 grams) more or less likely than those with a normal birth weight (2515 grams +) to be depressed at age 30? (Hint: crosstab of b0bwghtg and b30malg).

Solution: From the Analyse drop-down menu select Descriptive Statistics and then Crosstabs. Select b0bwghtg and click the right arrow button to place the variable into the Row(s) box. Click on b30malg and click the right arrow button to place into column(s) box. Click on the Cells button and select Row under the percentage heading. Click on the Continue button. Click on OK.
Using syntax: If PASTE is selected instead of OK, a syntax window will open and the following syntax command will appear in it. Highlight the syntax and then click on the right arrow button on the toolbar to run the command.

CROSSTABS
/TABLES=b0bwghtg BY b30malg
/FORMAT= AVALUE TABLES
/CELLS= COUNT ROW
/COUNT ROUND CELL.

Question 4: Is there a relationship between family social class and mental well-being? Are men and women whose father worked in a professional occupation when they were born more or less likely than those with a father who worked in an unskilled manual job when they were born to be depressed at age 30? (Hint: the same cross-tab procedure as above using b0fsoc and b30malg variables).

Question 5: Does academic achievement relate to mental well-being? Are men or women who have no academic qualifications by age 34 the most likely to be depressed at age 34? Is the relationship between academic achievement and mental well-being stronger for men or
women? Who is the least likely of all to be depressed at age 34? (Hint: cross-tab of b34hq5 by b34malg by bsex).

From the Analyse drop-down menu select Descriptive Statistics and then Crosstabs. Select b34hq5 and click the right arrow button to place the variable into the Row(s) box. Click on b34malg and click the right arrow button to place into the column(s) box. Click on bsex and click on the bottom right arrow button and put into the Layer box. Click on the Cells button and select Row under the percentage heading. Click on the Continue button. Now click on OK.

Using syntax: If PASTE is selected instead of OK, a syntax window will open and the following syntax command will appear in it. Highlight the syntax and then click on the right arrow button on the toolbar to run the command.

```
CROSSTABS
/TABLES=b34hq5 BY b34malg BY bsex
/FORMAT= AVALUE TABLES
/CELLS= COUNT ROW
/COUNT ROUND CELL.
```
Exercise 4 – Constructing summary scores

Making comparable summary scores at age 30 and age 34

When all 24 Malaise questions are asked the cut off point to indicate that someone is experiencing depression is a score of 8+, that is 'yes' was answered to at least 8 questions. In the survey that took place in 2004 when cohort members were age 34, just 9 of the 24 Malaise questions were asked. A score of 4+ is the cut off point to indicate that someone is experiencing depression.

In the survey that took place in 2000 when cohort members were age 30 the full 24 questions were asked. A way to test the validity of only using the 9 questions at age 34 is therefore to see if the same percentage of cohort members are identified as depressed at age 30 from their responses to the 9 questions as they are from responses to all 24 questions (b30malg).

Question 6: Make an overall score variable from 9 questions at age 30 to match the overall score variable at age 34. Are the same percentage of men and women identified as depressed by the reduced number of questions? This can be done through the drop-down menus or altering some existing syntax. (Hint: in the syntax below replace the variables starting with b34… with variables starting with b30…. Variable names correspond directly. For example b34mal02 is the same question as b30mal02).

This is the syntax used to construct the overall malaise score at age 34 (b34mal) and the grouped variable (b34malg).

\[
\text{count } \text{b34mal} = \text{b34mal02 b34mal03 b34mal05 b34mal09 b34mal12 b34mal14 b34mal16 b34mal20 b34mal21 (1).}
\]

The syntax below maximises the number of cohort members included in the variables by only excluding those with enough missing values to give them a 'high' (4+) malaise score.

\[
\text{count } \text{b34miss} = \text{b34mal02 b34mal03 b34mal05 b34mal09 b34mal12 b34mal14 b34mal16 b34mal20 b34mal21 (missing).}
\]

\[
\text{compute malmiss } = \text{b34mal + b34miss.}
\]

\[
\text{if (b34miss > 0 and b34mal } <= 3 \text{ and malmiss } >= 4) \text{ b34mal } = -1.
\]

\[
\text{if (b34miss } = 9) \text{ b34mal } = -2.
\]

\[
\text{recode b34mal (0 thru 3=1) (4 thru highest } = 2) (-1=-1) (-2=-2) \text{ into b34malg.}
\]

\[
\text{missing values b34mal b34malg (-1,-2).}
\]

\[
\text{variable labels b34mal 'bcs70 age 34: total Malaise score (9 questions)'.}
\]

\[
\text{variable labels b34malg 'bcs70 age 34: total Malaise score - grouped'.}
\]
value labels b34mal -1 'incomplete info' -2 'not stated any questions'.

value labels b34malg 1 '0-3' 2 '4+' -1 'incomplete info' -2 'not stated any questions'.

def b34mal b34malg.

Constructing the score from the drop-down menus:

STEP 1: Under the Transform drop-down menu, select Count. In the Target Variable box type in the name of the new summary variable (b30mal9v). In the Target Label box type in an appropriate label to help identify what the variable is. For example 'BCS70 age 30: total Malaise score (9 questions)'. Scroll down the list of variables and select the 9 malaise variables that are the same as those asked at age 34 (b30mal02, b30mal03, b30mal05, b30mal09, b30mal12, b30mal14, b30mal16, b30mal20, b30mal21) and click on the right arrow button to place them in the Variables: box. Once this has been done, click on the Define Values button.

On the left hand side of the new screen, click on the Value button and enter 1 into the empty box. Click on the Add button on the right hand side of the screen to move the information into the Values to Count box. Click on Continue, then OK.
Using syntax: If PASTE is selected instead of OK, a syntax window will open and the following syntax command will appear in it. Highlight the syntax and then click on the right arrow button on the toolbar to run the command.

COUNT
b30mal9v = b30mal02 b30mal03 b30mal05 b30mal09 b30mal12 b30mal14 b30mal16 b30mal20 b30mal21 (1)
VARIABLE LABELS b30mal9v 'BCS70 age 30: total Malaise score (9 questions)'.
EXECUTE .

STEP 2: Repeat this process to count the number of missing responses for each cohort member (variable name b30miss). Instead of counting the number of yes (value 1) responses, select System- or user-missing in the Values to count window.

STEP 3: The next stage is to maximise the number of cohort members we can include in the new dichotomous variable we will construct (b30mal9vg).

Under the Transform drop-down menu, select Compute. In the Target Variable box type in the name of the new variable that will add together the number of ‘yes’ responses and the number of ‘missing’ responses (e.g. malmss). Scroll down the list of variables to the two new variables you have just created b30mal9v and b30miss. Select b30mal9v and click on the right arrow button to move it into the Numeric Expression: box. Click on the + symbol. Then select
b30miss and click on the right arrow button to now move this variable into the Numeric Expression: box. Once this has been done, click on OK.

Using syntax: If PASTE is selected instead of OK, a syntax window will open and the following syntax command will appear in it. Highlight the syntax and then click on the right arrow button on the toolbar to run the command.

```
COMPUTE malmiss = b30mal9v + b30miss .
EXECUTE .
```

STEP 4: Recoding the cohort members who have a valid score in b30mal9v to 'missing' if they did not answer all 9 questions and the number of missing answers could affect whether they were assigned a depressed label or not in the new dichotomous variable b30mal9vg.

Under the Transform drop-down menu, again select Compute. In the Target Variable box type in the name of the existing variable b30mal9v. In the Numeric Expression box type in -1. (We do not want to make a new variable; we are just altering the existing one.) Click on the If button at the bottom of the screen. A new screen will open. Click on the button Include if case satisfies condition: Either type in the syntax rules (shown below) or select the variables from the variable list and click on the right arrow button to move them into the box. Likewise click on
the mathematical symbols and numbers. Click on Continue and then OK. SPSS will ask if you want to change the existing variable. Click Yes.

Using syntax: If PASTE is selected instead of OK, a syntax window will open and the following syntax command will appear in it. Highlight the syntax and then click on the right arrow button on the toolbar to run the command.

```
IF (b30miss > 0 and b30mal9v <= 3 and malmiss >= 4) b30mal9v = -1.
EXECUTE.
```

Repeat this process to assign a value of -2 to those who did not answer any of the 9 Malaise questions. (HINT: if b30miss = 9, b30mal9v = -2).
Exercise 5 – Recoding continuous variables

(continuation of 4.)

STEP 5: Recode the continuous variable into a dichotomous variable.
Under the Transform drop-down menu select Recode and then Into Different Variable.

Scroll down the list of variables and select b30mal9v, click on the right arrow button to move
the variable into the Numeric variable right arrow Output variable box. Type the name of the
new variable in the Name box, and label in the Label box. Click on the Change button to move
the information into the Numeric variable right arrow Output variable box. Now click on the Old
and New Values button.
Under Old value select Range and type 0 in the first box and 3 in the second box. Under New value select Value and type in 1. Click on the Add button to move the information into the Old right arrow New box. Repeat this for the values in the range 4 – 9 in b30mal9v and assign 2 as the new value in b30mal9vg. Under Old Value select Value and type in -1. Under New Value select Copy old value(s), then the Add button. Repeat this to copy the value -2 to the new variable. Click on Continue, then OK.
Using syntax: If PASTE is selected instead of OK, a syntax window will open and the following syntax command will appear in it. Highlight the syntax and then click on the right arrow button on the toolbar to run the command.

RECODE
b30mal9v
(-1=Copy) (-2=Copy) (0 thru 3=1) (4 thru 9=2) INTO b30mal9vg .
VARIABLE LABELS b30mal9vg 'bcs70 age 30: total Malaise score (9 questions - grouped').
EXECUTE .

STEP 6: Assigning missing values and value labels to b30mal and b34mal9vg. In the Variable View window, scroll down the variables to b30mal9v and b30mal9vg. Move across to the Values column and click on the box for b30mal9vg. A new screen will open. Type in 1 in the Value box and 0-3 in the Value Label box. Click on Add. Repeat this for the following 3 values: 2= 4+, -1= incomplete info, -2=not stated any questions. Click on OK.
Assign the same value labels to -1 and -2 in b30mal9v.

Click on the cell in the Missing column for variable b30mal9vg, and then select Discrete missing values. Type in -2 and -1 into the separate cells. Repeat this for variables b30mal9v.
As you can see, once you know the syntax to write, it is a much faster process than using the drop-down menus. If you save the syntax file you will also retain a record of how you made the variables.

Now compare the frequencies of the original Malaise dichotomous variable and the new dichotomous Malaise variable from the 9 questions. Are the same percentage of cohort members identified as depressed by the reduced number of questions? (Hint: Frequencies of b30malg b30mal9vg). Is this the same for men and women? (Hint: run a cross-tab of b30malg b30mal9vg by bsex).

Exercise 6 – Correlations between scores

Question 7: Depression (malaise) is measured at age 16, 26, 30 and 34. At which two time points, ages, are the scores most strongly associated? Is this the same for men and women? (Hint: correlate the four continuous variables b16mal b26mal b30mal b34mal).

From the Analyse drop-down menu select Correlate and then Bivariate. Select b16mal and click the right arrow button to place it into the Variables box. Repeat for variables b26mal, b30mal, b34mal. Click OK.
Using syntax: If PASTE is selected instead of OK, a syntax window will open and the following syntax command will appear in it. Highlight the syntax and then click on the right arrow button on the toolbar to run the command.

CORRELATIONS
/VARIABLES=b16mal b26mal b30mal b34mal
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE .

Re-run the analyses for men and women separately. (Hint: use Select cases).

From the Data drop-down menu, select Select Cases. Click on If condition is satisfied and then the If button. Select the bsex variable and click the right arrow button to place it into the white box. To select men, add = 1 after bsex. Click on Continue and then OK. Now re-run the Correlate command, first for men then for women. To select women only, add = 2 after bsex.
Exercise 7 – Linear regression

Linear regression estimates the coefficients by a linear equation, involving one or more independent variables, which best predict the value of the dependent variable, in this example malaise score at age 34.

Question 8: Although the correlation between malaise scores at age 16 and 34 was the weakest among the four scores, the positive correlation was highly significant. Using simple linear and then multiple regression we first predict a high malaise score at age 34 from malaise score at age 16, and then control for birthweight, gender, mother’s age of leaving full-time education and age left full-time education.

From the Analyse drop-down menu select Regression and then Linear. Select b34mal and click the right arrow button to place it into the Dependent box. In the same way, add b16mal bsex b0bwght b0mumed and b34lefted to the Independent(s) box.
Click on Statistics and select Descriptive Statistics and Casewise Diagnostics – this will identify any outliers in the data.

Click on Plots to request a plot of Standardised Predicted Residuals (Y) against Standardised Predicted Values (X).

The following syntax is produced when the paste command is selected.

Using syntax: If PASTE is selected instead of OK, a syntax window will open and the following syntax command will appear in it. Highlight the syntax and then click on the right arrow button on the toolbar to run the command.

REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT b34mal
/METHOD=ENTER b16mal /METHOD=ENTER b16mal bsex b0bwght b0mumed b34lefted
/SCATTERPLOT=(*ZPRED ,*ZRESID)

/CASEWISE PLOT(ZRESID) OUTLIERS(3).

Fitting real data into the Linear regression equation

The Linear Regression equation is:

(Predicted) \(\hat{Y} = b_0 + b_1(x_1) + b_2(x_2) + \ldots b_p(x_p) \)

Using the regression equation (above), use the statistics produced in the B column in the Coefficients table in the SPSS output file and the information below to calculate the estimated Malaise score for a cohort member at age 34.

This particular cohort member:

- is female
- had a low birth weight of 2410 grams
- had a very high malaise score at age 16 of 44
• had a mother who left education at age 15
• had an A/S level qualification (highest academic qualification achieved).

Using syntax: SPSS syntax to identify this cohort member is temporary.

select if (bsex = 2 and b16mal = 44 and b0mumed = 15 and b0bwght = 2410 and b34hq13 = 4).

SUMMARIZE
/TABLES=bcsid bsex b16mal b0mumed b0bwght b34hq13. /FORMAT=VALIDLIST NOCASENUM TOTAL LIMIT=100
/TITLE='Case Summaries'
/MISSING=VARIABLE
/CELLS=COUNT .

Compare this with their actual Malaise score at age 34 (Y). How accurate was the predicted Y? (Hint: to find the individual cohort member in the data file, go to the Data View window and place the cursor on the bcsid column, select Find from the Edit drop-down menu. The bcsid number to find is B24447M. Look under b34mal to see the actual score obtained at age 34).

You could repeat the above analysis using different but similar variables in the data file. For example, replace highest qualification at age 34 with the age the cohort member left full-time education (b34lefted), mother's age of leaving full-time education with father's age of leaving...
full-time education (b0daded) or family social class at some point in childhood (b0psoc, b5psoc, etc).

Exercise 8 – Logistic regression

A similar analysis can be run using logistic regression to predict depression at age 34 from signs of depression at age 16, birth weight, gender, mother’s age of leaving full-time education and own highest qualification by age 34.

From the Analyse drop-down menu select Regression and then Binary Logistic to open the Logistic Regression dialog box. Transfer the categorical Malaise score variable b34malg into the Dependent box, and the (predictor) variables into the Covariates box. In the first analysis just move the grouped malaise score at age 16 (b16malg). In the second stage of the analysis include the other measures from birth using the categorical (that is, not continuous) measures for mother in education post-15 (b0mumedg), birth weight (b0bwghtg), gender (bsex) and highest qualification at age 34 (b34hq5).

Reference category

Categorical variables require a reference category to be set. There are different methods of contrasting category membership in a variable. The default method in SPSS is Indicator, with the last (highest value) category being set as the reference category. (In the SPSS output, the reference category is represented in the contrast matrix as a row of zeros.)

In our model, this would mean that the reference category in the variable b34hq5 would be set as category 5'higher degree / PGCE'. The relative importance of membership to each of the other qualification groups (values 0'none' up to 4'degree….nursing qual') will be compared against membership to category 5'higher degree / PGCE'.

Click on the Categorical button to open the Define Categorical Variables box. Move the covariates into the Categorical Covariates box. The default makes the last (highest value) category of a variable the reference category. To change the reference category to the first (lowest value) category, click on First and then Change. Do this for the each of the following variables b16malg, bsex, b0bwghtg, b0meumedg. Click on Continue and then OK.
Using syntax: If PASTE is selected instead of OK, a syntax window will open and the following syntax command will appear in it. Highlight the syntax and then click on the right arrow button on the toolbar to run the command.

Initial analyses
LOGISTIC REGRESSION b34malg
/METHOD = ENTER b16malg
/CONTRAST (b16malg)=Indicator(1)
/Criteria = PIN(.05) POUT(.10) ITERATE(20) CUT(.5).

Second analyses
LOGISTIC REGRESSION b34malg
/METHOD = ENTER b16malg bsex b0mumegd b0bwghtg b34hq5
/CONTRAST (b16malg)=Indicator(1) /CONTRAST (bsex)=Indicator(1) /CONTRAST (b0mumegd)=Indicator(1) /CONTRAST (b0bwghtg)=Indicator(1) /CONTRAST (b34hq5)=Indicator
/Criteria = PIN(.05) POUT(.10) ITERATE(20) CUT(.5).

Looking at the Variables in the Equation table:
• How much more likely were depressed teenagers to grow up to be a depressed 34 year old?
• After taking into account gender, birth weight, whether mother remained in education after 15 and own highest qualification, how much more likely were depressed teenagers to grow up to be depressed at age 34?
• After malaise score at age 16, which variable makes the biggest contribution to the model?

Further stages of analysis
Repeat the above analysis adding in new variables or replacing variables with similar measures. For example, whether father remained in education post-15 (b0dadged). Remember to think about whether it makes more sense to set the first or last category as the reference category. If a variable has many categories (e.g. family social class), recode to have fewer categories.

• Is mother’s or father’s age of leaving full-time education the stronger measure (bigger coefficient) for predicting depression at age 34?
• Which variable makes a significant contribution to the model when mother’s age of leaving full-time education is included, but not when father’s age of leaving full-time education is included?

You could also try repeating the above analyses for men and women separately.

• Are the results the same for men and women separately?

Interaction terms
For each variable in the logistic model, it is assumed that the effect is the same for all values of other variables in the model. For example, the effect of level of a mother’s education is the same for men as it is for women. If this is not the case, there is an interaction. You can include a term for the level of mother’s education (b0mumedg) by gender (bsex) interaction in your model.

To include an interaction term between depression at age 16 and gender in your model click on bsex and then b16malg whilst simultaneously pressing the Ctrl key on your PC keyboard. This will mean both variables are highlighted. Click on the >a*b< button to place an interaction term in the Covariates dialog box. Continue as before.
Using syntax: If PASTE is selected instead of OK, a syntax window will open and the following syntax command will appear in it. Highlight the syntax and then click on the right arrow button on the toolbar to run the command.

LOGISTIC REGRESSION b34malg
/METHOD = ENTER b16malg bsex b0mumedg b0bwghtg b34hq5 b16malg*bsex
/CONTRAST (b16malg)=Indicator(1) /CONTRAST (bsex)=Indicator(1) /CONTRAST (b0mumedg)=Indicator(1) /CONTRAST (b0bwghtg)=Indicator(1) /CONTRAST (b34hq5)=Indicator
/Criteria = PIN(.05) POUT(.10) ITERATE(20) CUT(.5) .

- Is the interaction significant? Try repeating this using the continuous malaise score at age 16 variables (b16mal). Are the same results obtained?

Remember all of these exercises can be repeated for cross-cohort comparisons using similar variables in the NCDS data file n042malaise.sav.
References

Acknowledgements

UK Data Service would like to thank the Centre for Longitudinal Studies, Institute of Education, University of London for their permission to reproduce this resource online.