
Copyright © 2020 UK Data Service. Created by New Forms of Data Training Team, Cathie Marsh Institute and UK Data Service

Text-Mining: Advanced Options

Dr. J. Kasmire
Research Fellow at Cathie Marsh Institute and UK Data Service

julia.kasmire@manchester.ac.uk

@JKasmireComplex

You might also be interested in...

Recent -
� Being a Computational Social Scientist
� Text-mining � Intro and Theory, Basic Processes
� Web-scraping for Social Science Research (case study, from websites, and from API's)
� Code Demos
� https://www.ukdataservice.ac.uk/news-and-events/events/past-events.aspx
� https://www.youtube.com/user/UKDATASERVICE

Upcoming -
� Health Studies User Conference 30 June 20
� Social Data and the Third Sector 2 to 16 July 20
� Text-mining Code Demos � expected in September

Text-mining has 4 basic steps

Retriev
al

Processin
g

Extractio
n

Analysi
s

Processes:
� Tokenisation, standardisation, removing irrelevancies,

linguistic form consolidation
Basic NLP:
� Tagging, Chunking, etc.
Basic Extraction:
� Frequency counts, similarity, discovery

Advanced Extraction:
� Classification tasks
� Sentiment analysis
� Extracted named entities
� Network graphs

Automatic classification � a thought experiment

� 100,000 old scientific articles to be sorted into which modern scientific field they match best

� No keywords, not published in journals or published in journals that don�t match current fields,
use old terminology, etc.

� Rather than read and manually classify them all, how about we teach a computer to classify
them for us

Classification tasks require:

� A set of documents
� A set of classes to which the documents may belong.
� A tool that makes predictions about what classes the documents belong to

Classification returns:

� A prediction about what class a new document belongs to
� A number between 0 and 1 for each class

= 0.54 0.25 0.05 0.0001

= 0.71 0.37 0.12 0.09

= 0.92 0.58 0.01 0.001

Machine learning

� A training set of documents that are already correctly classified.
� Train a model or learning algorithm on the training set.
� A test set of documents that are already correctly classified.
� Test the model, comparing performance to a benchmark if possible.

Sentiment analysis

� Training & test sets = csv/data frame/etc. with text documents and �pos� or �neg�S tags
� Learning algorithm = spaCy/nltk/other nlp option
� Benchmark not always relevant, performance metrics still are

Sample training and test data

train = [
('I love this sandwich.', 'pos'),
('this is an amazing place!', 'pos'),
('I feel very good about these beers.', 'pos'),
('this is my best work.', 'pos'),
("what an awesome view", 'pos'),
('I do not like this restaurant', 'neg'),
('I am tired of this stuff.', 'neg'),
("I can't deal with this", 'neg'),
('he is my sworn enemy!', 'neg'),
('my boss is horrible.', 'neg')]

test = [
('the beer was good.', 'pos'),
('I do not enjoy my job', 'neg'),
("I ain't feeling dandy today.", 'neg'),
("I feel amazing!", 'pos'),
('Gary is a friend of mine.', 'pos'),
("I can't believe I'm doing this.", 'neg')]

Training = associates features (words) to scores (word1 = �pos�, word2 = �pos�, wordn = �neg�)
Test = sums feature associations to get probable score (�pos� + �neg� + �pos� = �pos�)

Naïve Bayes Classification � basic frequency in action

Training = 'I' 'love' 'this' 'sandwich' (pos) plus 'I' "can't" 'deal' 'with' 'this' (neg)
'love' 'sandwich' "can't" 'deal' 'with�

'I' 'this' 'I' 'this�

Test = �I deal with sandwiches� (neg)
'I deal with sandwiches�

Prediction = �neg� Actual = �neg�
Prediction strength = �0.25.

There are more sophisticated options if you want a custom naïve bayes classifier.

Efficiency

Real training and test data sets are huge.

Processing will reduce the number of (irrelevant) features to be extracted/evaluated.

love, loves, loving �
deal, deals, dealing �

love
deal

Network graphs

Map relationships between things
� The things are �nodes�
� The relationships are links or �edges�

Network graphs can be�

Undirected, meaning the edges are bi-directional
� or directionless

Network graph can be�

Directed,
meaning the edges are
uni-directional

Indicates non-reciprocal
relationships

Although nodes can by
multiply linked to show
reciprocal but unequal
relationships

Network graphs can be�

Unweighted, meaning the edges
are all equal �weight�

Indicating all relationships are
Of equal �strength�, �value�,
etc.

Network graphs can be�

Weighted, meaning the edges
have individual �weight�

Indicating relationships vary
in �strength�, �value�, etc.

Nodes � basic processes

['Archibald walked
through Manchester
with Beryl.�]

['Tariq saw Beryl
when she was
playing tennis.�,]

['Archibald shares a
house with Beryl
and Cerys.�]

[('Archibald', 'NNP'), ('walked', 'VBD�),
('through', 'IN'), ('Manchester', 'NNP�),
('with', 'IN'), ('Beryl', 'NNP�)('.', '.�)]

[('Tariq', 'NNP'), ('saw', 'VBD'), ('Beryl', 'NNP'),
('when', 'WRB'), ('she', 'PRP'), ('was', 'VBD'),
('playing', 'VBG'), ('tennis', 'NN'), ('.', '.�)]

[('Archibald', 'NNP')), ('shares', 'NNS'), ('a',
'DT'), ('house', 'NN'), ('with', 'IN'), ('Beryl',
'NNP'), ('and', 'CC'), ('Cerys', 'NNP�) , ('.', '.�)]

Nodes � basic processes  Named Entity Recognition chunker

['Archibald walked
through Manchester
with Beryl.�]

['Tariq saw Beryl
when she was
playing tennis.�,]

['Archibald shares a
house with Beryl
and Cerys.�]

[Tree('S�,
[Tree('PERSON', [('Archibald', 'NNP')]), 'walked', 'VBD'),
('through', 'IN'), ('Manchester', 'NNP'), ('with', 'IN�),
Tree('PERSON', [('Beryl', 'NNP')]), ('.', '.�)])

Tree('S�,
[Tree('PERSON', [('Tariq', 'NNP')]), ('saw', 'VBD'),
Tree('PERSON', [('Beryl', 'NNP')]), ('when', 'WRB'), ('she',
'PRP'), ('was', 'VBD'), ('playing', 'VBG'), ('tennis',
'NN'), ('.', '.')])

Tree('S�,
[Tree('PERSON', [('Archibald', 'NNP')]), ('shares', 'NNS'),
('a', 'DT'), ('house', 'NN'), ('with', 'IN�),
Tree('PERSON', [('Beryl', 'NNP')]), ('and', 'CC'),
Tree('PERSON', [('Cerys', 'NNP')]), ('.', '.')])

Nodes � basics  NE chunker Extract chunks

['Archibald walked
through Manchester
with Beryl.�]

['Tariq saw Beryl
when she was
playing tennis.�,]

['Archibald shares a
house with Beryl
and Cerys.�]

['Archibald', 'Beryl']

['Tariq','Beryl']

['Archibald', 'Beryl', 'Cerys']

Nodes � basics  NE chunk  Extract chunks  find unique chunks

['Archibald walked
through Manchester
with Beryl.�]

['Tariq saw Beryl
when she was
playing tennis.�,]

['Archibald shares a
house with Beryl
and Cerys.�]

['Archibald�,

'Beryl�

'Tariq�,

'Cerys']

Edges � basics  NE chunk  Extract chunks

['Archibald walked
through Manchester
with Beryl.�]

['Tariq saw Beryl
when she was
playing tennis.�,]

['Archibald shares a
house with Beryl
and Cerys.�]

['Archibald', 'Beryl�]

['Tariq','Beryl�]

['Archibald', 'Beryl', 'Cerys']

Edges � basics  NE chunk  Extract chunks  co-occurring pairs

['Archibald walked
through Manchester
with Beryl.�]

['Tariq saw Beryl
when she was
playing tennis.�,]

['Archibald shares a
house with Beryl
and Cerys.�]

[('Archibald', 'Beryl'),
('Beryl', 'Archibald'),
('Archibald', 'Cerys'),
('Cerys', 'Archibald'),
('Beryl', 'Cerys'),
('Cerys', 'Beryl')]

[('Archibald','Beryl'),
('Beryl', 'Archibald')]

['Tariq','Beryl'),
('Beryl', 'Tariq')]

Edges � basics  NE chunks  co-occurrences weights/directed?

['Archibald walked
through Manchester
with Beryl.�]

['Tariq saw Beryl
when she was
playing tennis.�,]

['Archibald shares a
house with Beryl
and Cerys.�]

[('Archibald', 'Beryl�, 1),
('Beryl', 'Archibald', 1)]

[('Archibald', 'Beryl�, 20),
('Beryl', 'Archibald�, 20)),
('Archibald', 'Cerys�, 20)),
('Cerys', 'Archibald�, 20)),
('Beryl', 'Cerys�, 20)),
('Cerys', 'Beryl�, 20))]

['Tariq','Beryl', 0.5),
('Beryl', 'Tariq�, 0.1)]

Populated a network graph with extracted nodes and edges

'Cerys'

'Archibald�

'Beryl'

'Tariq'

Undirected
Unweighted

Populated a network graph with extracted nodes and edges

'Cerys'

'Archibald�

'Beryl'

'Tariq'

Directed
Weighted

Undirected, unweighted, circular layout

Weighted, undirected, spring layout

Links to code, python packages and resources

� https://github.com/UKDataServiceOpen/text-mining/tree/master/code
� nltk (Natural Language Toolkit) https://www.nltk.org/book/ch01.html
� nltk.corpus http://www.nltk.org/howto/corpus.html
� spaCy https://nlpforhackers.io/complete-guide-to-spacy/
� Semantic vectors package

https://github.com/semanticvectors/semanticvectors/wiki
� Geometry and Meaning, by Dominic Widdows

https://web.stanford.edu/group/cslipublications/cslipublications/site/157586448
7.shtml

� Networkx python package
https://networkx.github.io/documentation/stable/reference/index.html

Questions

julia.kasmire@manchester.ac.uk
@JKasmireComplex

UKDS
@UKDataService
UKDataService

Dr. J. Kasmire

