S |
|ﬁé UK Data Service

Text-Mining: Basic Processes

Dr. J. Kasmire
Research Fellow at Cathie Marsh Institute and UK Data Service

julia.kasmire@manchester.ac.uk

, @dJKasmireComplex

Copyright © [year] UK Data Service. Created by [Organisation], [Institution]
(D) 5v-nc-sa |

Text-mining is a form of data-mining

S)
Im//; UK Data Service

Text-mining has 4 basic steps

@)

Retriev Processin Extractio Analysi
al g n S

Processing: Basic Extraction:
« Tokenisation (dividing raw data) « POS-tagging

« Standardising (case, spelling, RegEXx)

« Removing irrelevancies (punctuation, stopwords, etc.)

« Consolidation (stemming and/or lemmatising)
Basic NLP: « Word frequency

« Tagging, Named Entity Recognition and Chunking * Similarity
* Discovery |$> UK Data Service

« Chunking
« Named Entity Recognition

Processing — Raw data into useful data

Great big file with the text content of hundreds of newspaper articles.

You may want to:

» Break it into many small files of one article each (with useful names)

* Insert a line break after each article

» Write out each article to a dictionary with key-value pairs for article features

A
SEEE

% Semantic Line Breaks

[‘Author(s)’: ‘Writer1, Writer2’
‘Date’: ‘Junetember 43, 3024’
‘Headline’: ‘They started Text-
Mining and you will not believe
what happens next!’
‘Publication’: ‘Fake News Corp.’
‘Article’: “Yada yada yada, blah.’]

> :
|ﬁﬁ UK Data Service

Processing — Tokenisation

Tokens = lowest unit of natural language processing analysis.

Example:
text = "It's raining cats and dogs. It is also raining elephants, which is becoming a problem."

Tokenize by words
[" g 'ralr'nng ['ca'ts] ‘and' || 'dogs’ [] n g ['al|so] 'ralr'ung

‘elephants’ || ',]['which'][is' || 'becoming’][a’ ‘problem’][]]

Tokenize by sentences

1ti1s also raining elephants, which IS becomlng a]
pmhlpm '

[“It’s raining cats and dogs.”] [

] .
|ﬁ4 UK Data Service

Processing — Standardising

Goal is to replace multiple forms of ‘same’ token with a single form
RegEXx is like find-and-replace - useful for standardising on terminology/acronyms/etc.

Example: “cats" --> “puddy-tats"

‘It's raining cats and dogs. It is also raining elephants, which is becoming a problem.’

N

‘It's raining puddy-tats and dogs. It is also raining elephants, which is becoming a problem.’

S ,
|ﬁ4 UK Data Service

Processing — Standardising

Multiple replacements with a RegEx dict = {'cats’ : ‘puddy-tats’,
‘dogs’ : ‘doggos’,
‘elephants’ : ‘rhinos’,
‘problem’ : ‘kerfuffle’, }

‘It's raining cats and dogs. It is also raining elephants, which is becoming a problem.’

Sy —

‘It's raining puddy-tats and doggos. It is also raining rhinos, which is becoming a kerfuffle.’

Many standardisation tools with different targets

S ,
|ﬁ4 UK Data Service

Processing — Removing irrelevancies

Punctuation

lltl IIIS"

'ra||'1|ng ['c?ts] and' || 'dogs’ [] i [i ['allso] 'ran'1|ng

['elephants']['which']['is' ['becoming']['‘a’ ['problem’][]

§

'‘and’ || 'dogs’ :'It' 'is' ['a|'SO]

‘raining

m g ralr'ung c?ts]

‘elephants’ ['which'] 'is' || 'becoming' || 'a’ '‘problem’

S)
|m4 UK Data Service

Processing — Removing irrelevancies

Stop words

lltl

2

raining)

=)

‘and’

'dogs'

a

Iltl

(s

['al'so]

raining

['elephants']['which']['is' ['becoming']['‘a’ ['problem’][]
['ralr'ung ['ca'nts 'dogs' [] e] ['al'so ['ralr'ung
‘elephants’]] ['becoming'] ['problem'’][]

S)
|m4 UK Data Service

Processing — Consolidation

Removing different word forms so they count as ‘the same word’

Stemming

raining

Iltl

()

[‘elephants’]

0

[E [‘rain’

(ot

[‘eleph’]

)

'dogs’

)

It |

['‘becoming’]

4

ldogl

B

'‘becom’]

['al'so]['ralr'nng

['‘problem’][]

'al'so][‘rain’]

'problem’][]

S
|ﬁ4 UK Data Service

4
{
{
A
“«

Fil |
4
I
y ‘;‘v

Processing — Consolidation

Lemmatising

m ralr'nng [ca'ts] ‘dogs’ [] m al'so] ralr'nng
['elephants'] '‘becoming’ '‘problem’ []
"It 'raining' ['cat' ‘dog’ 't ['also' 'raining'
‘elephant’ '‘becoming’ '‘problem’

S
|W4 UK Data Service

Basic NLP — Part of Speech tagging

['ralr'ung][‘cats

]

'dogs’ I

['also] raining]

[‘elephants’ '‘becoming’ '‘problem’
(Tt (‘raining’, (‘cats, (‘dogs, (1, ‘ | PR
'PRN')][VBG') ‘NNS") [‘NNS’) 'PRN') [(also’ RB)
(‘raining’, (‘elephants’, (" becoming’, ‘ C en i

S ,
|ﬁ4 UK Data Service

8

Basic NLP — Post POS-tagging Lemmatisation

Coeny U "Vaay U s &y I ey J((cals0 RE) |

(‘raining’, (‘elephants’, (" becoming’, ‘ L NN D
[VBG)] NNS')] VBG) [(pmb'em’ NN)]
lltl [lrainl ‘Cat' £dog|] lltl [‘aISOI]
'rain’ ‘elephant’] '‘become’ ‘problem'’

S ,
|ﬁ4 UK Data Service

Basic NLP — Chunking

[(1T, (s,] (‘raining’, [(‘cats,][(‘and’, (dogs,][
'PRN) \VBZ’) \/BG') ‘NNS’) ‘CCH ‘NNS") ‘PUN)
(
S
(1T, (’s, (‘raining’, [(‘cats,][(‘and’, (‘dogs,][/
prNY L vRZ) VRG) NNS') Jeted NNS'))
\
(S It/PRP 's/VBZ raining/VBG cats/NNS and/CC dogs/NNS ./.)

UK Data Service

o
Q

Basic NLP — Named Entity Recognition

[(‘bBruce’,][(Wayne', [(s, [(‘the’, [(CEO,][(or,
GNNP!) ‘NNP,) JL ‘\/R7!) ‘DT,) ‘NN’) ‘IN’)
(‘Wayne’, [(‘Enterprises’, (', [(‘but, ('1s’, (also’,
GN.NP!) GN.NP!) ‘pl lN!) i(‘\'('\") i\/R7,) ‘RR!)
(‘Batman’,] (.,
‘WP’) ipl IN,)

> :
|ﬁ4 UK Data Service

Basic NLP — Named Entity Recognition

s N

p
PERSON J [ORGANIZATION J
— | (‘Bruce’, (‘Wayne’, (1S, (the’,
| NNP’)) ‘NNP’) ‘VBZ) JT ‘D)
ORGANIZATION ’ ' ’
_ [(CEO, _[(of,]_ (‘VWayne’, (‘Enterprises’,
‘NN’) GIN’) 3) 3)
PERSON

(‘Batman’,
‘NNP’)

(/) /

> :
|ﬁ4 UK Data Service

\ W ey U vazy JU Cemy

Processing — What to do and in what order?
Chunking and/or POS-lemmatising requires text that is already tokenised and POS-tagged.

RegEx may be best before removing uppercase to better catch acronyms or abbreviatons.
Add changes to a pipeline and run the whole thing from scratch.

Replicability is important!

POS- Lemmatisin
tagging g

Pipeline

[Tokenisation]

Remove
punctuation/stop words

S ,
|ﬁ4 UK Data Service

Extraction - Word Frequency

" A s] 'ralr?lngj['ca'ts]['and']

'dogs’ [] 't ['is'

['also

=)

‘elephants' || "']

'which'

['is’

['‘becoming’][‘a’

['‘problem’][]

Pipeline

Word tokens Remove uppercase, pungtuatlon,
stop words, empty strings

[

Stemmin
g

J

Coun
t

Example:
{'It": 2, 'raining": 2,

'cats’: 1, 'dogs': 1, 'also': 1, 'elephants’: 1, 'becoming': 1, 'problem': 1}

S)
|ﬁ4 UK Data Service

Extraction - Word Frequency

The entire text of ‘Emma’ by Jane Austen
(available through nltk.corpus.gutenberg functions)

Pipeline

[Word tokens]

[Remove uppercase, punctuation,]

Stemmin
stop words, empty strings g

Coun
t
10 most common words =

{'mr', 1855, 'emma’, 865, 'could', 837, 'would', 821, 'miss', 614, 'must', 571, 'harriet’, 506, 'much’, 486,
'said’, 484, 'think', 467}

|

Count of the word ‘common’ = 142

S ,
|ﬁ4 UK Data Service

Extraction — Word similarity

Uses concepts of 'word vectors’ (built into packages like spaCy)

Score included words on 300 dimensions derived from
 How the word is used in large corpora of natural language
» Part of speech, etc.

« What words are typically found before or after

- Etc.

Word-to-Word similarity returns a score between 0 (no similarity) and 1 (identical).

S ,
|ﬁ4 UK Data Service

TROL |ELF |RABBI
L T
TROL |1 0.4 0.29
L
ELF (04 1 0.34
RABBII029 1034 |1

4 .
,
|

b

S
|ﬁ4 UK Data Service

Extraction — Document similarity

Document similarity works in a comparable way:

« Document vectors are created (no pre-loaded document vectors)
« 2 or more document vectors are compared

* Returns value between 0 and 1

« 'Emma’ and ‘Persuasion’, both by Jane Austen = 0.99
« ‘Emma’ by Austen and ‘Julius Caesar’ by Shakespeare = 0.97
« ‘Emma’ by Austen and ‘Firefox’ from Webtext corpus = 0.86

> :
|ﬁ4 UK Data Service

Extraction — Discovery

Capturing patterns to discover context and use

Define a pattern Returns
pattern = [{'LOWER": 'like’}, like a look
like a merit
{'LOWER" 'a’}, like a gentleman
like a job
{'POS": 'NOUN'}] like a woman
like a bride

like a brother
like a daughter

S ,
|ﬁ4 UK Data Service

Extraction — Discovery

A more complex pattern

Define a pattern Returns
pattern2 = [{'POS":'VERB}, looked like a sensible young man
[LOWER': 'like’}, argued like a young man
{LOWER" 'a’}, appear like a bride
seemed like a perfect cure
{'DEP""amod', 'OP":"?"}, enters like a brother

writes like a sensible man
{'DEP"'amod', 'OP":"?"},

{'DEP'"'amod’, 'OP":"?"},
{'POS'": 'NOUN'}]

S .
|ﬁ4 UK Data Service

Links to code, python packages and resources
https://github.com/UKDataServiceOpen/text-
mining/tree/master/code

nitk (Natural Language Toolkit) https://www.nltk.org/book/ch01.html
nitk.corpus http://www.nltk.org/howto/corpus.html

spaCy https://nipforhackers.io/complete-quide-to-spacy/

Semantic vectors package
https://github.com/semanticvectors/semanticvectors/wiki

« Geometry and Meaning, by Dominic Widdows
https://web.stanford.edu/group/cslipublications/cslipublications/site/
1575864487 .shtml

S ,
|ﬁ4 UK Data Service

Questions

Dr. J. Kasmire

julia.kasmire@manchester.ac.uk
W @JKasmireComplex

UKDS
YW @UKDataService
ﬁ UKDataService

