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Text-mining is a form of data-mining



Text-mining has 4 basic steps
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Processing:
� Tokenisation (dividing raw data)
� Standardising (case, spelling, RegEx)
� Removing irrelevancies (punctuation, stopwords, etc.)
� Consolidation (stemming and/or lemmatising)
Basic NLP:
� Tagging, Named Entity Recognition and Chunking

Basic Extraction:
� POS-tagging
� Chunking
� Named Entity Recognition
� Word frequency
� Similarity
� Discovery



Processing � Raw data into useful data
Great big file with the text content of hundreds of newspaper articles.

You may want to:
� Break it into many small files of one article each (with useful names)
� Insert a line break after each article
� Write out each article to a dictionary with key-value pairs for article features

[�Author(s)�: �Writer1, Writer2�
�Date�: �Junetember 43, 3024�
�Headline�: �They started Text-
Mining and you will not believe 
what happens next!�
�Publication�: �Fake News Corp.�
�Article�: �Yada yada yada, blah.�]



Processing � Tokenisation
Tokens = lowest unit of natural language processing analysis. 

Example:
text = "It's raining cats and dogs. It is also raining elephants, which is becoming a problem."

Tokenize by words

[
]

Tokenize by sentences

[ 
]

'.' 'It'

',''elephants'

'also
'

'is''dogs''and''cats
'

'raining
'"'s"'It' 'raining

'

'which' 'is' 'becoming' 'a' 'problem' '.'

'It is also raining elephants, which is becoming a 
problem. '�It�s raining cats and dogs.� 



Processing � Standardising
Goal is to replace multiple forms of �same� token with a single form

RegEx is like find-and-replace  - useful for standardising on terminology/acronyms/etc.

Example:   �cats" --> �puddy-tats"

�It's raining cats and dogs. It is also raining elephants, which is becoming a problem.�

�It's raining puddy-tats and dogs. It is also raining elephants, which is becoming a problem.�



Processing � Standardising
Multiple replacements with a RegEx dict = {�cats� : �puddy-tats�,

�dogs� : �doggos�,
�elephants� : �rhinos�,
�problem� : �kerfuffle�, }

�It's raining cats and dogs. It is also raining elephants, which is becoming a problem.�

�It's raining puddy-tats and doggos.  It is also raining rhinos, which is becoming a kerfuffle.�

Many standardisation tools with different targets



Processing � Removing irrelevancies
Punctuation
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',''elephants'
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Processing � Removing irrelevancies
Stop words
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Processing � Consolidation
Removing different word forms so they count as �the same word�
Stemming
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Processing � Consolidation
Lemmatising
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Basic NLP � Part of Speech tagging
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Basic NLP � Post POS-tagging Lemmatisation
(�cats', 
�NNS�)
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Basic NLP � Chunking
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Basic NLP � Named Entity Recognition
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Basic NLP � Named Entity Recognition
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Processing � What to do and in what order?
Chunking and/or POS-lemmatising requires text that is already tokenised and POS-tagged.

RegEx may be best before removing uppercase to better catch acronyms or abbreviatons.

Add changes to a pipeline and run the whole thing from scratch.

Replicability is important!

Pipeline

Tokenisation Stemmin
g

Remove stop 
words

Remove 
punctuation

Pipeline

Tokenisation Remove 
punctuation/stop words

POS-
tagging

Lemmatisin
g



Extraction - Word Frequency

Example:
{'It': 2,  'raining': 2, 

'cats': 1, 'dogs': 1, 'also': 1, 'elephants': 1, 'becoming': 1, 'problem': 1}

Pipeline

Word tokens Coun
t

Remove uppercase, punctuation, 
stop words, empty strings

Stemmin
g

'.' 'It'

',''elephants'

'also
'

'is''dogs''and''cats
'

'raining
'"'s"'It' 'raining

'

'which' 'is' 'becoming' 'a' 'problem' '.'



Extraction - Word Frequency

The entire text of �Emma� by Jane Austen 
(available through nltk.corpus.gutenberg functions)

Pipeline

Word tokens Coun
t

Remove uppercase, punctuation, 
stop words, empty strings

Stemmin
g

10 most common words =
{'mr', 1855, 'emma', 865, 'could', 837, 'would', 821, 'miss', 614, 'must', 571, 'harriet', 506, 'much', 486, 
'said', 484, 'think', 467}

Count of the word �common� = 142



Extraction � Word similarity

Uses concepts of 'word vectors� (built into packages like spaCy)

Score included words on 300 dimensions derived from
� How the word is used in large corpora of natural language
� Part of speech, etc.
� What words are typically found before or after
� Etc.

Word-to-Word similarity returns a score between 0 (no similarity) and 1 (identical).



Extraction � Word similarity

TROL
L

ELF RABBI
T

TROL
L

1 0.4 0.29

ELF 0.4 1 0.34
RABBI 0.29 0.34 1



Extraction � Document similarity

Document similarity works in a comparable way:
� Document vectors are created (no pre-loaded document vectors) 
� 2 or more document vectors are compared 
� Returns value between 0 and 1

� �Emma� and �Persuasion�, both by Jane Austen = 0.99
� �Emma� by Austen and �Julius Caesar� by Shakespeare = 0.97
� �Emma� by Austen and �Firefox� from Webtext corpus = 0.86



Extraction � Discovery

Capturing patterns to discover context and use

Define a pattern 

pattern = [{'LOWER': 'like�}, 

{'LOWER': 'a�}, 

{'POS': 'NOUN�}]

Returns

like a look
like a merit
like a gentleman
like a job
like a woman
like a bride
like a brother
like a daughter



Extraction � Discovery

A more complex pattern

Define a pattern 

pattern2 = [{'POS':'VERB�},
{'LOWER': 'like�},
{'LOWER': 'a�},

{'DEP':'amod', 'OP':"?"},

{'DEP':'amod', 'OP':"?"},

{'DEP':'amod', 'OP':"?"},
{'POS': 'NOUN'}]

Returns

looked like a sensible young man
argued like a young man
appear like a bride
seemed like a perfect cure
enters like a brother
writes like a sensible man



Links to code, python packages and resources

� https://github.com/UKDataServiceOpen/text-
mining/tree/master/code

� nltk (Natural Language Toolkit) https://www.nltk.org/book/ch01.html
� nltk.corpus http://www.nltk.org/howto/corpus.html
� spaCy https://nlpforhackers.io/complete-guide-to-spacy/
� Semantic vectors package 

https://github.com/semanticvectors/semanticvectors/wiki
� Geometry and Meaning, by Dominic Widdows

https://web.stanford.edu/group/cslipublications/cslipublications/site/
1575864487.shtml



Questions

julia.kasmire@manchester.ac.uk
@JKasmireComplex

UKDS
@UKDataService
UKDataService

Dr. J. Kasmire


