
Tools, data, code,
and sharing
Coding in Public workshop
2024

Copyright © 2021. Created by Computational Social Science Training Team, UK Data Service. 1

Table of Contents

• Modern tools
• Command line and code
• Documenting data
• Deployment and sharing
• Q&A
• Breakout #3

2

Modern tools

3

Tools can help prevent this sort of thing.

4

Tools to help

• Online meetings
• Recording/auto transcription
• Export attendees
• Save and export chat
• AI summarising/notetaking

• M365 suite – all in one solution?
• Schedule meetings within a channel to save the chat
• Send emails to channels
• Save posts as to-do items

• Trigger-action services (IFTTT, Zapier, Pipedream, etc.)
• Automate actions (export zoom attendees to a spreadsheet in gdrive, etc)
• Useful if you need to work across lots of platforms
• Requires access to accounts to run

• Version control – more on this next

5

Version control software

• Solves a lot of problems
• Draft 1, draft 2, final draft 1, final draft 2, etc.
• Integrating feedback from multiple users
• Central storage
• Change log

• Lots of options
• In M365 (although relatively invisible so some users revert to old patterns)
• Git and git-based cloud services
• SVN, etc.
• Very powerful, not so beginner friendly

6

Version control as a police evidence room

• The master version lives centrally
• People “check out” copies to work on
• The copies are checked back into the master version WITH

• Changes, additions, etc.
• A message about what was changes/added/etc., and
• System stamps saying who checked it in and when

• Conflicts (incompatible changes on 2+ check ins) must be resolved
• reject all check-in changes from one or the other
• compare incompatible changes side by side and reject one at a time
• etc.

• Good practice = always “check out” newest copy before working

7

Other topics

• Track tasks
• To-do lists/apps
• Kanban boards/apps

• Automation
• Link apps/online services together to chain actions
• Choose good triggers and actions based on agreed processes (e.g. when

Kanban board ticket is marked as finished, add line to spreadsheet)

8

What tools do you like to use for teamwork?

9

Modern pace of technological change

• Tools are made or discontinued at a rapid pace
• Software is updated frequently, complicating

versions/dependencies
• Methods are developed continuously, but are not always very

accessible
• Plus, cultish adherence/avoidance

10

Modern tools, modern problems

• You can automate the boring stuff to do more than was
feasible before

• But automated processes can break easily

11

Ignorance can be fixed, but not everything can

• Rapid pace of change and increased complexity mean = lack
of skills or knowledge

• Fixing this is possible, but not always easy
• Openness to change is harder because it is often a (nearly)

fixed feature of personality

12

Share some of your wins and/or fails

13

Consider when choosing collaborative tools

• Cloud vs. local
• Cross-platform/open source vs. paid/proprietary
• Tracked vs. untracked
• Written vs. spoken
• Visual vs. descriptive
• Consider size/speed requirements
• Make environments clear (or irrelevant)

14

Tools for teamwork

• Pick (and stick to) good naming conventions and shared locations
• ALWAYS leave useful commit comments (if available)
• Everyone uses most recent version each time (check out)
• Agree in advance (and stick to) a plan for settling conflicts

15

Command line and code

16

Shell commands and code can seem scary

This Photo by Unknown Author is licensed under CC BY-SA-NC

17

https://www.ip-watch.org/2018/10/12/microsoft-joins-open-invention-network-nice-validation-open-source-movement/
https://creativecommons.org/licenses/by-nc-sa/3.0/

But actually…

18

Have you used git?

19

Key shell commands for git

• git pull
• git add *
• git commit –m”useful commit message here”
• git push
• git status

20

What are your key git commands?

21

Collaboration, code, version control

Use “comments” in code to:
• Declare any useful background info (like author, current project status,

software environment, etc.)
• Explain what this given line of code does or what it refers to
• Ask yourself questions, list steps you want to do next, address whether a

functional thing will be upgraded in the future, etc.
• Example:

Basic Coding Example by J. Kasmire
Python Version- 3.9.5
print("spam and eggs") ## This classic beginner command

references classic Monthy Python sketches

22

Code for what, exactly?

• All the steps of your process that you possible can do in code
• Data collection
• Cleaning/prepping
• Analysis
• Visualisations

23

But why code?

• By writing your processes in code, you
• Are forced to write it correctly/ordered
• Can rerun it/generalise it easily
• Can share it
• Have a head start or methodology section.

24

What barriers stop you and your colleagues
from using code?

25

Where/how should I code?

• Coding language appropriate for your project
• Cloud with password protect if needed (check GDPR)
• Interactive notebooks are ideal (more on this later)
• Capture your computational environment (more on this later)

26

Coding for teamwork

• Pick (and stick to) good naming conventions
• ALWAYS leave useful commit comments
• Everyone always checks out before working
• Agree in advance (and stick to) a plan for settling conflicts
• Write in-code comments – LOTS OF THEM!
• Use good naming conventions for in-code variables too.

27

Documenting data

28

Data sharing – FAIR

• Findable – somewhere popular, indexed, well labelled, etc.
• Accessible – as open as possible
• Interoperable – in a standard format, shape, etc.
• Reusable – appropriate meta-data, column names, etc. so it is

easy to combine, etc.

29

Data sharing – Supported locations

• Often provide DOI, permanent url or citations
• UKDS https://ukdataservice.ac.uk/deposit-data/
• UK Data Archive https://www.data-archive.ac.uk/deposit/
• OSF https://osf.io/
• Mendeley data https://data.mendeley.com/
• Field or discipline specific holdings

https://www.bgs.ac.uk/geological-data/national-geoscience-
data-centre/ngdc-depositing-data/

• University or research institute libraries?
• Your funding body?

30

https://ukdataservice.ac.uk/deposit-data/
https://www.data-archive.ac.uk/deposit/
https://osf.io/
https://data.mendeley.com/
https://www.bgs.ac.uk/geological-data/national-geoscience-data-centre/ngdc-depositing-data/
https://www.bgs.ac.uk/geological-data/national-geoscience-data-centre/ngdc-depositing-data/

Data sharing – Own locations

• More control, but also more responsibility
• Github
• Personal website
• Cloud server space
• Own server

• You can make your own DOI, permanent link or citation!
• QR codes make sharing easy www.qrcode-monkey.com

31

http://www.qrcode-monkey.com/

What are pros/cons of
“data available on request”?

32

If you can’t share your date, describe it!
What is important in a good data description?

33

Deployment and sharing

34

Capture your computational environment

35

Makefiles

36

Interactive notebooks

• jupyter notebook, Rmd, etc.
• Allow users to inspect/run code without downloading it
• The environment is built into the interactive notebook
• Can include comments, etc.

37

Sample jupyter notebook

Go to my arrow of time notebook?

38

References

39

• UKDS https://ukdataservice.ac.uk/deposit-data/
• UK Data Archive https://www.data-archive.ac.uk/deposit/
• OSF https://osf.io/
• Mendeley data https://data.mendeley.com/
• https://www.bgs.ac.uk/geological-data/national-geoscience-data-centre/ngdc-depositing-data/
• https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
• https://www.wpbeginner.com/wp-tutorials/how-to-create-custom-permalinks-in-wordpress/
• www.qrcode-monkey.com
• Data in Government Blog tinyurl.com/Synth-DataInGov
• The unreasonable effectiveness of synthetic data with Daeil Kim tinyurl.com/Synth-Podcast
• Medium article this webinar is based on tinyurl.com/Synth-Blogpost
• The Anonymisation Decision-Making Framework https://msrbcel.files.wordpress.com/2020/11/adf-final-version-3.1-
for-uploading.pdf
• Synthetic data estimation for the UK longitudinal studies https://calls.ac.uk/output-entry/synthetic-data-
estimation-for-the-uk-longitudinal-studies-sylls-project-an-introduction-to-the-multiple-imputation-approach/
• Synthetic Datasets for Statistical Disclosure Control: Theory and Implementation: 201
https://www.springer.com/gp/book/9781461403258
• https://www.nature.com/articles/s41551-021-00751-8
• Make https://the-turing-way.netlify.app/reproducible-research/make

https://ukdataservice.ac.uk/deposit-data/
https://www.data-archive.ac.uk/deposit/
https://osf.io/
https://data.mendeley.com/
https://www.bgs.ac.uk/geological-data/national-geoscience-data-centre/ngdc-depositing-data/
https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://www.wpbeginner.com/wp-tutorials/how-to-create-custom-permalinks-in-wordpress/
http://www.qrcode-monkey.com/
http://tinyurl.com/Synth-DataInGov
http://tinyurl.com/Synth-Podcast
http://tinyurl.com/Synth-Blogpost
https://msrbcel.files.wordpress.com/2020/11/adf-final-version-3.1-for-uploading.pdf
https://msrbcel.files.wordpress.com/2020/11/adf-final-version-3.1-for-uploading.pdf
https://calls.ac.uk/output-entry/synthetic-data-estimation-for-the-uk-longitudinal-studies-sylls-project-an-introduction-to-the-multiple-imputation-approach/
https://calls.ac.uk/output-entry/synthetic-data-estimation-for-the-uk-longitudinal-studies-sylls-project-an-introduction-to-the-multiple-imputation-approach/
https://www.springer.com/gp/book/9781461403258
https://www.nature.com/articles/s41551-021-00751-8

Q&A

40

Breakout #3

41

	Tools, data, code, and sharing
	Table of Contents
	Modern tools
	Tools can help prevent this sort of thing.
	Tools to help
	Version control software
	Version control as a police evidence room
	Other topics
	What tools do you like to use for teamwork?
	Modern pace of technological change
	Modern tools, modern problems
	Ignorance can be fixed, but not everything can
	Share some of your wins and/or fails
	Consider when choosing collaborative tools
	Tools for teamwork
	Command line and code
	Shell commands and code can seem scary
	But actually…
	Have you used git?
	Key shell commands for git
	What are your key git commands?
	Collaboration, code, version control
	Code for what, exactly?
	But why code?
	What barriers stop you and your colleagues from using code?
	Where/how should I code?
	Coding for teamwork
	Documenting data
	Data sharing – FAIR
	Data sharing – Supported locations
	Data sharing – Own locations
	What are pros/cons of �“data available on request”?
	If you can’t share your date, describe it! �What is important in a good data description?
	Deployment and sharing
	Capture your computational environment
	Makefiles
	Interactive notebooks
	Sample jupyter notebook
	References
	Q&A
	Breakout #3

