
Tools, data, code, 
and sharing
Coding in Public workshop
2024

Copyright © 2021. Created by Computational Social Science Training Team, UK Data Service. 1



Table of Contents

• Modern tools 
• Command line and code
• Documenting data
• Deployment and sharing
• Q&A
• Breakout #3

2



Modern tools
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Tools can help prevent this sort of thing. 
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Tools to help

• Online meetings
• Recording/auto transcription
• Export attendees
• Save and export chat
• AI summarising/notetaking

• M365 suite – all in one solution?
• Schedule meetings within a channel to save the chat
• Send emails to channels
• Save posts as to-do items

• Trigger-action services (IFTTT, Zapier, Pipedream, etc.) 
• Automate actions (export zoom attendees to a spreadsheet in gdrive, etc)
• Useful if you need to work across lots of platforms
• Requires access to accounts to run

• Version control – more on this next
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Version control software

• Solves a lot of problems
• Draft 1, draft 2, final draft 1, final draft 2, etc.
• Integrating feedback from multiple users
• Central storage
• Change log

• Lots of options
• In M365 (although relatively invisible so some users revert to old patterns)
• Git and git-based cloud services
• SVN, etc.
• Very powerful, not so beginner friendly
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Version control as a police evidence room

• The master version lives centrally
• People “check out” copies to work on
• The copies are checked back into the master version WITH

• Changes, additions, etc.
• A message about what was changes/added/etc., and
• System stamps saying who checked it in and when

• Conflicts (incompatible changes on 2+ check ins) must be resolved
• reject all check-in changes from one or the other
• compare incompatible changes side by side and reject one at a time
• etc.

• Good practice = always “check out” newest copy before working
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Other topics

• Track tasks
• To-do lists/apps
• Kanban boards/apps

• Automation
• Link apps/online services together to chain actions
• Choose good triggers and actions based on agreed processes (e.g. when 

Kanban board ticket is marked as finished, add line to spreadsheet)
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What tools do you like to use for teamwork?
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Modern pace of technological change

• Tools are made or discontinued at a rapid pace
• Software is updated frequently, complicating 

versions/dependencies
• Methods are developed continuously, but are not always very 

accessible
• Plus, cultish adherence/avoidance 
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Modern tools, modern problems

• You can automate the boring stuff to do more than was 
feasible before

• But automated processes can break easily
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Ignorance can be fixed, but not everything can

• Rapid pace of change and increased complexity mean = lack 
of skills or knowledge

• Fixing this is possible, but not always easy
• Openness to change is harder because it is often a (nearly) 

fixed feature of personality
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Share some of your wins and/or fails
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Consider when choosing collaborative tools

• Cloud vs. local 
• Cross-platform/open source vs. paid/proprietary
• Tracked vs. untracked
• Written vs. spoken
• Visual vs. descriptive
• Consider size/speed requirements
• Make environments clear (or irrelevant)
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Tools for teamwork

• Pick (and stick to) good naming conventions and shared locations
• ALWAYS leave useful commit comments (if available)
• Everyone uses most recent version each time (check out)  
• Agree in advance (and stick to) a plan for settling conflicts
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Command line and code
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Shell commands and code can seem scary

This Photo by Unknown Author is licensed under CC BY-SA-NC
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https://creativecommons.org/licenses/by-nc-sa/3.0/


But actually…
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Have you used git?
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Key shell commands for git

• git pull
• git add *
• git commit –m”useful commit message here”
• git push
• git status
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What are your key git commands?
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Collaboration, code, version control

Use “comments” in code to:
• Declare any useful background info (like author, current project status, 

software environment, etc.)
• Explain what this given line of code does or what it refers to
• Ask yourself questions, list steps you want to do next, address whether a 

functional thing will be upgraded in the future, etc. 
• Example:

## Basic Coding Example by J. Kasmire
## Python Version- 3.9.5
print("spam and eggs") ## This classic beginner command

## references classic Monthy Python sketches
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Code for what, exactly?

• All the steps of your process that you possible can do in code
• Data collection
• Cleaning/prepping
• Analysis
• Visualisations
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But why code?

• By writing your processes in code, you
• Are forced to write it correctly/ordered 
• Can rerun it/generalise it easily 
• Can share it
• Have a head start or methodology section. 
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What barriers stop you and your colleagues 
from using code?
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Where/how should I code?

• Coding language appropriate for your project
• Cloud with password protect if needed (check GDPR)
• Interactive notebooks are ideal (more on this later)
• Capture your computational environment (more on this later)
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Coding for teamwork

• Pick (and stick to) good naming conventions
• ALWAYS leave useful commit comments
• Everyone always checks out before working
• Agree in advance (and stick to) a plan for settling conflicts
• Write in-code comments – LOTS OF THEM!
• Use good naming conventions for in-code variables too. 
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Documenting data
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Data sharing – FAIR

• Findable – somewhere popular, indexed, well labelled, etc.
• Accessible – as open as possible
• Interoperable – in a standard format, shape, etc.
• Reusable – appropriate meta-data, column names, etc. so it is 

easy to combine, etc. 
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Data sharing – Supported locations

• Often provide DOI, permanent url or citations
• UKDS https://ukdataservice.ac.uk/deposit-data/
• UK Data Archive https://www.data-archive.ac.uk/deposit/
• OSF https://osf.io/
• Mendeley data https://data.mendeley.com/
• Field or discipline specific holdings 

https://www.bgs.ac.uk/geological-data/national-geoscience-
data-centre/ngdc-depositing-data/

• University or research institute libraries?
• Your funding body?
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Data sharing – Own locations

• More control, but also more responsibility
• Github
• Personal website
• Cloud server space
• Own server

• You can make your own DOI, permanent link or citation!
• QR codes make sharing easy www.qrcode-monkey.com
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http://www.qrcode-monkey.com/


What are pros/cons of 
“data available on request”?
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If you can’t share your date, describe it! 
What is important in a good data description?
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Deployment and sharing
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Capture your computational environment
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Makefiles
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Interactive notebooks

• jupyter notebook, Rmd, etc.
• Allow users to inspect/run code without downloading it
• The environment is built into the interactive notebook
• Can include comments, etc. 
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Sample jupyter notebook

Go to my arrow of time notebook?
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Q&A
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Breakout #3
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