ukdataservice.ac.uk

Using R to
analyse key
UK surveys

UK Data Service

§\\
|||/

UK Data Service - Using R to analyse key UK surveys

Author: UK Data Service
Updated: July 2019
Version: 1.3

We are happy for our materials to be used and copied but request that users should:

® (ink to our original materials instead of re-mounting our materials on your
website

® cite this an original source as follows:

Pierre Walthery (updated by Rosalynd Southern, 2013 and Ana Morales, 2017). Using
R to analyse key UK surveys. UK Data Service, University of Essex and University of
Manchester.

UK Data Service - Using R to analyse key UK surveys

Contents
L INErOAUCTION. ..o 4
1.1 WAt iS R? ..t 4
1.2 The pros and the CONS Of R.....oeooiiic e 5
2. Using R: essential information ..o e 7
2.1 Installing and loading user-written packages..........cccoceveeiieccnice e, 9
I - 4 [o ol 1= 11 o 2SS 10
2.3. Interacting with R: command line vs graphical interface.........cccccevveinenens 12
R T © T o 1=t €3 [N S SO 13
2.5. Deleting object from the R environment using the rm() function................ 14
ST Y- 1V o o 1o N SO 14
3. R STUAIO bbb 17
4. Opening UK Data Service datasets iN Rccoceeeiiiieeiecise et 19
4.1. Which version of UK Data Service datasets can luse in R?.........ccccceovvnvennns 19
Y £ T 1= 01U 30 Y/ o 1= SO 21
5. Essentials of data manipulation...........ccccorieciece e 23
5.1 Identifying and selecting variables and observations............cccoccveevinnennenn. 23
5.2 Creating and recoding variables ..o iiieeceecesese e 24
5.3. Renaming variables and Categoriesccccccvvvrieriericseeeee e 25
5.4, MiSSING VAIUESooieeeieie ettt et e te e sreene e enaennens 26
6. Descriptive statistics using R - continuous variables..........cccccceoevveieiecivcecieenen, 29
6.1 Distribution graphscooe e s 30
6.2. Significance testing of correlationccoceveveiiie e 33
6.3. Tables of summary statistiCS.........ccooeiiiiiiececese e 33
6.4. Bar charts and plots of summary statistiCS.......ccccccveeveienceniesescee e 35
6.5 Saving and importing a graph in a Word document..........cccccovvveeecieceenene, 38
6.6 Weighted descriptive statistics.........ccoovirieieii i 39
7. Categorical variables: contingency tablescccovveveievesiecccceee s 41
7.1 One way frequeNCy tables ... s 41
7.2 Creating bar plots of one-way frequency tables.........ccccocevvvreeceieiecececene 41
7.3 Two way or more contingency tables ..o 42
7.4. Test of association between categorical variables...........ccccccoeveiirieecnnenne. 45
7.5. Univariate and bivariate graphs for categorical variables.............cccccevennnn. 46
8. Plotting SIMple Maps iN Rc.ooiieeees et 48

8.1. Acquiring and downloading the datacccceveieieiicicceecesee e 48

UK Data Service - Using R to analyse key UK surveys

8.2. Mapping in R — the basic principle.........ccoooieiiine e 50
8.3 Producing the data needed for MappPiNg........cccceervereninenne e 51
8.4 Merging the boundary shapefiles and the data to be plotted 53
8.5. Plotting the Map.......ccoi e e 54
9. Further commands and aNalySEsccoerriririininn e 56
10. Additional ONLINE FESOUICES ..ot 57

11. R T=T L] LU= 58

UK Data Service - Using R to analyse key UK surveys

1. Introduction

The aim of this guide is to provide an introduction to analysing large UK surveys
with the help of the R statistical software package. This document is targeted at two
categories of users:

1. Those outside higher education, or who do not have access to one of the
commonly used statistical packages such as Stata, SPSS or SAS (as R is free
of charge) but who would like to conduct their own analysis beyond what is
usually published by data producers such as the Office for National Statistics
(for example statistics for specific groups of the population).

2. More advanced users who are already familiar with one of the
aforementioned packages but would like to learn how to carry out their
analyses in R. The guide, therefore, focuses on providing step-by-step
examples of common operations most users carry out in the course of their
research: how to open datasets, do basic data manipulation operations,
produce simple descriptive statistics or weighted contingency tables. This is
meant to provide the first category of users with a range of procedures that
will help them produce straightforward and robust analyses tailored to their
needs without spending too much time on learning the inner workings of R.
The second category of users will find a number of familiar operations from
which they will be able to further expand their R skills.

It should be noted however that this guide is not an introduction to R. Beginners
should use it in conjunction with one of the more comprehensive guides available
online. Links and information about R resources are available at the end of this
document.

Examples provided in this guide, use the Quarterly Labour Force Survey, January -
March, 2016, which can be downloaded from the UK Data Service website. The
website also has instructions on how to acquire and download large-scale
government datasets.

1.1. What is R?

R is a free, user developed, advanced statistical and computing programme. It has a
large audience in the programming and statistical community and is increasingly
used in the academic world for teaching purposes. R can be downloaded from the
Comprehensive R Archive Network (CRAN) website. Installation instructions as well
as guides, tutorials and FAQ are available on the same website.

R is often described as an object-oriented statistical programming language rather
than simply a statistical analysis package. It originates in the ‘S’ and 'S Plus’
languages developed during the 1970s and 1980s. Anyone can download and use it
without charge, and to some extent contribute to and amend the existing

UK Data Service - Using R to analyse key UK surveys

programme itself. It is particularly favoured by users who want to develop their own
statistical application or implement the latest advances that are not yet available in
commercial packages. The existence of a vast number (more than 3,600 at the time
of writing this guide) of user written packages — which bear some resemblance to
downloadable ado files in Stata — is one of the great strengths of R. Users who want
to contribute should be aware that in order to be part of the R archive, a minimum
set of rules need to be followed.

Although R can perform most of the tasks available in generalist statistical packages
such as Stata, SPSS, or SAS, it has a broader potential since it can also be used for
mapping or data mining. Being a language also means that there are often several
ways to carry out analyses in R, each one with its pros and cons. Publication quality
output from R can be obtained easily thanks to its integration with the LaTeX
document presentation system, and R graphs can also be imported into MS Word
documents.

1.2. The pros and the cons of R

Although R has advantages over other statistical analysis software, it has also a few
downsides, both of which are summarised below. Users should be reminded that as
an open-source software, R and its packages are developed by volunteers, which
makes it a very flexible and dynamic project, but at the same time reliant on
developers' free time and good will.

Pros

Cons

R is free, and allows users to perform
almost any analysis they want.

R puts statistical analysis closer to the
reach of individual citizens rather than
specialists.

Transparency of use and programming
of the software and its routines, which
improves the peer-reviewing and quality
control of the software in many cases

Very flexible

Availability of a wide range of advanced
techniques not provided in mainstream
statistical software or only available in
specialised packages

A very large user base provides abundant
documentation, tutorials, and web pages

The learning curve may be steep for
users who do not have a reasonably
robust background in statistics and
programming.

Problem solving (for both advanced and
beginners) in R may be time-consuming,
depending on how common the
problem encountered is and may lead to
more time spent solving technical rather
than substantive issues.

Packages can stop being maintained
without notice, and some of them have
a short life span. Many people who
design them are or will become busy
academics, and at some point will not
have the time to maintain them
anymore. Others will take over in some,
but not necessary in all the cases.

UK Data Service - Using R to analyse key UK surveys

There are several (sometimes many) ways of achieving a particular result in R. This
can be confusing for inexperienced users, but at the same time will allow
researchers to tightly adjust their programmes to their needs.

UK Data Service - Using R to analyse key UK surveys

2. Using R: essential information

The R installation programme can be downloaded from the CRAN website and run
like any other Windows applications. Versions for Mac and Linux are also available.

After installation, the standard R interface that appears when the programme is
launched is shown below. As with advanced statistical packages, the preferred way
to interact with R is the command line at the bottom of the R Console and/or by
typing commands in a script file (Menu File >New Script). All or selected
(highlighted) parts of a script file can be run by typing Control-R.

R RGui (64-bit)
File Edit View Misc Packages Windows Help

=]ew] [=]e]o][@]
R R Consele EI@

R version 3.2.5 (2016-04-14) -- "Very, Very Secure Dishes"
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86 64-wE4-mingw3Z/x€4 (64-bit)

R is free software and comes with ABSCLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collakorative project with many contributors.
Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, oxr
'help.start () ' for an HTML kbrowser interface to help.

Type 'di()}' to guit R.

[Previously saved workspace restored]

Most R commands adopt the following syntax:

> command(parameterl, parameter2, ...,)

Any R command needs to be followed by brackets. In the example shown below
getwd is followed by brackets in order for it to understood by R. getwd() identifies

which folder R uses by default to store and retrieve files i.e the default working
directory

> getwd()

The output of the comment is visible below.

UK Data Service - Using R to analyse key UK surveys

Type 'demo() " for some demos, Thelp()' for on-line help, or
'help.start{) " for an HTML browser interface to help.
Type 'qi)" to guit E.

> getwd ()
[1] "C:/Documents and Settings/pwalthe/My Documents”

> |
s

To tell R to use the folder 'R_ESDS’ (which needs to be created first) in ‘My
Documents’ as the default location for opening and storing files, one needs to type:

> setwd(*'C:/Documents and Settings/<INSERT YOUR
USERNAME HERE>/My Documents/R_ESDS”')

Typing getwd() again confirms that the change has been recorded.

Notes:

@ any character string that is neither a command nor the name of an object (such
as a variable name) needs to be put between inverted commas or quotation
marks - see the example below about loading user-created packages.

® even when no parameters are specified for a command, brackets are compulsory
as shown in the getwd () example above

® R uses forward slashes rather than backslashes (unlike most Windows
applications) to separate directories. Using backlashes will return an error
message

@ although in theory most R commands require a large number of options to be
specified, in many cases default values have been ‘factory set’ so that only the
essential parameters need specifying.

The output of most R commands can be either directly displayed on the screen (as
in the above example) or stored in objects that can be subsequently reused in
further commands.

For instance, typing:

> a<-getwd(Q)

will store the output of the getwd() command (that is, the name of the current
default directory) into an object called ‘a’. In order to view the content of a, one can
just type its name:

UK Data Service - Using R to analyse key UK surveys

= a<-getwd ()
= a

[1] "C:/Document& and Settings/pwalthe/My Documents/R_ESDS"
= |

<

The working directory can also be set by using the graphical interface menu:

File... change dir...

A new window will open to select a folder to be used by R as the default directory:

Browse For Folder A M

Change working directory to:
C:l

1% Computer

» &L, 05 (C)

> oy DVD RW Drive (D:)
> iy BD-ROM Drive (E:)

€| m

Folder: 05 (C:)

[Make MNew Folder]

2.1. Installing and loading user-written packages

Apart from a basic set of commands and functions, most of the tools offered by R
are available in packages that are not provided during the main installation and need
to be installed and downloaded separately from within R. For example, in order to
install the foreign package which allows users to import Stata or SPSS datasets, one
needs to type:

> install.packages("foreign®)

UK Data Service - Using R to analyse key UK surveys

R
File Edit View Misc Packages Windows Help
s e
R [= [=][= | | [algeria (https)
Australia (Canberra) [https]
R wversion 3.2.5 (2016-04-14) -- "Very, Very Secure Dishes"™ ~ i

Australia (Melbourne) [https]
Australia (Perth) [https]
Austria [https]

Belgium (Ghent) [https]

Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_€4-wed-mingw3Z/xé4 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY. Brazil (PR) [https]
You are welcome to redistribute it under certain conditions. Brazil (RJ) [https]
Type 'license ()" or "licence()' for distribution details. Brazil (SP 1) [https]
Bulgaria [https]
Natural language Support but running in an English locale E;'}a‘ia[i‘ME]][hﬁPS]
ile ttps]
R is a collaborative project with many contributors. E:Meléht.‘.t.ps] htt
Type 'contributors()' for more information and Ch:::EHEEI#::]gEfEﬂpE]SI
'citation()' on how to cite R or R packages in pubklications. China (Lanzhou) [https]
, . . , . Colombia (Cali) [https]
Type 'demo () for some demos, help() for on-line help, or Czech Republic [https]
'help.start()' for an HTML browser interface to help.

Denmark [https]

Estenia [https]

France (Lyon 1) [https]
France (Lyon 2) [https]
France (Marseille) [https]
France (Mentpellier) [hitps]

Type 'g()" to guit R.
[Previously saved workspace restored]

» install.packages ('foreing")

Installing package into ‘C:/Users/Laptop 4/Documents/R/win-library/3.2° France (Paris 2] [https]
(as *lib' is unspecified) Germany (Gottingen) [https]
--- Please select a CRAN mirror for use in this session --- Germany (Manster) [https]
Greece [https]
b Iceland [https]

A window will appear, prompting user to choose a location where to download the
package from. In this case, we can choose for example UK (Bristol). The package is
then downloaded and available for use by R. In order to use it however one needs to
type

> library(foreign)

in order to load it into the memory.

> library(Q

Will tell users which libraries have been downloaded and can be loaded in memory.

For users who feel more comfortable using ‘click-and-point’, there is also the option
to use ‘Install Packages’ from the Packages tab in the main R window. This will
display a list of packages available in alphabetical order for the user to choose from.

Next, select the desired package, double click on it and press ‘OK’ for the installation
to begin.

2.2. Getting help

The standard help system in R (unless otherwise chosen at the time of installation)
relies on the default web browser (Firefox or Internet Explorer in most cases) to
display pages. Within R, the most straightforward way to request help with a

command consists of a question mark followed by the command name, without a
space in between.

Typing
> ?getwd

UK Data Service - Using R to analyse key UK surveys

is the equivalent of:
> help("getwd®)

and will open the help page for the getwd() command in the default web browser.

E)R: Get or Set Waorking Directory - Mozilla Firefox

Bl Edt Yew Hgtory Gockmarks ook Hep

{8 Morlla Frefox Start Page « | R Getor Set Working Drectory = | &
R 1270.0.1: 12014 et igetwe |31 Pl
H LEXHAL - Keyword - @ SewchHOLIS - Clar ¥ Scholar
getwd {base} R Documentation

Get or Set Working Directory
Description I

qetwd refims an absolute filepath representing the cunrent working divectory of the R process,
satwd (dir) i¢ nged to get the working directory to die

Usage

getwd {)
setwd {dic}

.:\L'g umants

dir A character string: tilde expansion will be done

Value

getwd retums a character string or wuLL if the working directory is not available. On Windows the path
returned will use / as the path separator and be encoded in UTF-8. The path will not have a trailing /
unless it 15 the root directory (of a drive or share on Windows)

setwd retums the current directory before the change, mwvisibly and with the same conventions as getwd. It
will give an ervor if it does not succeed (including if it is not implemented)

Hote

MNote that the retwrn value 15 sad to be an absolute filepath: there can be more than one representation of
the path to a directory and on some OSes the value returned can differ after changing directories and
changing back to the same directory (for example if svmbolic links have been traversed)

See Also

list.files for the comfents of a directory. v

This will work for any command directly available in memory (ie in the default
package or those in the packages loaded via the library()) command. Otherwise, R
will return an error message.

Typing two question marks followed by a keyword will search all of R the available
documentation for that keyword

> ??foreign

An index of all commands and functions in the foreign package can be obtained by
typing:

> help(package="foreign")
This only work because the ‘foreign’ package was previously loaded in memory with

the library() command.

More information about where to find help when using R is provided at the end of
this document.

UK Data Service - Using R to analyse key UK surveys

2.3. Interacting with R: command line vs graphical interface

As with other statistical packages, most users will want to write their programme in
a script file, similar to the ‘do’ file in Stata or syntax file in SPSS. Most users will also
save their programmes as R script files (files ending with the .R suffix). To open a
script in R, one needs to select ‘New script’ in the ‘File’ menu — this will produce a
script window in which to type commands:

R RGui (84-bit) - m| X
File Edit Packages Windows Help

Mew script Ctrl+N

Open script... Ctrl+Q —]

Save Ctrl+5 |i”£”£l

Save as...)

Print... Ctrl+P 4-14) —-— "Wery, Very Secure Dishes™

E Foundation for Statistical Computing
Close script ngw3Z/x64 (64-bit)

E is free software and comes with ABSCLUTELY HO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or '"licence|()' for distribution details.

Natural language support but running in an English locale
E i= a collakorative project with many contributors.
Type 'contributors()' for more information and

'citation()"' on how to cite R or R packages in pubklications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.startc () ' for an HIML krowser interface to help.

£ >

IR Untitled - R Editor =N E=R (™

Within a script window, the whole file or a selection of commands can be run by
pressing CTRL-R.

On the other hand, several graphical user interfaces (GUI) have been developed for
R users unfamiliar with writing syntax files. RKward, Deducer R Commander are a
few examples of such GUIs. Some of these (such as R Commander) target beginners
or students and provide access to only a subset of simple statistical analysis tools,
while others cover most of the R commands.

The GUI interfaces are different from the R basic interface and have their own
learning curve so they will not be described in detail in this document. Below
however is a brief overview of how to install and use R Commander.

UK Data Service - Using R to analyse key UK surveys

R commander is in fact an R package as any other one. It can be installed by typing:
> install .packages("Rcmdr™)

The difference with other R packages is that loading the package in memory will

actually launch R Commander:

> library(Rcmdr)

Below is a screenshot of R Commander, which shows some of the functions it
offers: descriptive statistics, graphs, data editing, generation of random
distributions. See the R Commander documentation for more information.

R Console

R Commander - .— ”E'xJ

File Edit Data Statistcs Graphs Models Distributons Tools Help
Bb Data set | <MNo active dataset>| [Edlt data set J[V\ew data set| Model ‘ <No active mode\>|

> library{remdr) Script Window
Error in library{rd
> library{Remdr)

Loading required pal
Loading Tcl/Tk inte
Loading required pal

Loading required p3 Output Window Submit]
Loading required pal ‘

"help.start ()" for
Type Bl ¥ to.dudk

Remdr Version 1.8-3)

Attaching package:
The following objed

tclvalue

Messages
[2] WARNING: The Windows wersion of the R Commander works best under F &
with the single-document interface (5SDI); see ?Commander. =

<

2.4. ObjectsinR

R is an object oriented language, which means that almost any information it uses
is stored as ‘objects’ — ie containers -- that can be manipulated independently.
During an R session, multiple objects are available simultaneously (for instance
datasets, but also summary tables or new variables produced from it). Typing

> I1sO

will list all the objects currently in memory.

UK Data Service - Using R to analyse key UK surveys

Objects belong to classes or types which have distinct properties. There are many
classes of objects in R. By comparison Stata has only macros, variables and scalars
directly available to most users. Common object classes include factors (roughly
equivalent to categorical variables), vectors (numerical variables — whether
continuous or ordinal), data frames (datasets), matrices, etc. Not all operations are
possible with all objects in R. More advanced users can also create their own object
classes. Describing R objects and their properties is well beyond the purpose of this
guide and users interested should consult the online documentation for further
explanations.

2.5. Deleting object from the R environment using the rml)
function

The rm() function can be used to remove objects from the environment (session).
The objects to delete can be variables, lists, datasets, etc. For instance, to remove
the object x, or the dataset ‘mydata’:

> rm(x)

> rm(mydata)

This only works with R objects; if we want to delete a specific variable of a dataset,
we need a different function. For example, to delete the variable ‘age’ of the dataset
‘mydata’, an option is to set the variable to NULL:

> mydata$age<-NULL

There are of course other alternatives to delete variables from a dataset. But these
are beyond the scope of this introductory guide.

2.6. SavinginR

When working with data, it is very likely that the user will edit the original dataset,
either by recoding variables or creating new ones, etc. In those cases, saving the
progress made in the data used is crucial to avoid repeating every single operation
in the next session working with the data.

There are several ways of accomplish this, depending on the format in which the
data will be stored.

The line of command used to save the data frame used called “mydata” is:

UK Data Service - Using R to analyse key UK surveys

> save(mydata, file="mydata.Rda')

This command will save the data into a format that can be read by R. The first part of
the command is referring to the data frame used in the current R session, while the
section file="mydata.Rda", is referring to the data that will be saved in the working
directory. The name of the saved file can be changed, for instance:

> save(mydata, file="mydata Janl7.Rda'™)

To load the saved .Rda data:

> load("'mydata_Janl7_Rda'™)

This command will work only if the working directory where the data is stored is
defined in advance (see section 2). Alternatively, the path to the folder where the
data is saved can be specified.

> load(“c:/mydocuments/mydata_Janl7.Rda')
Another option to save the data is using the “foreign” package, so data can be

exported to several formats, such as .txt, .cvs, .dta, which can be used in other
software packages.

The following example shows how to export data from R to a comma delimited
format (.csv) that can be read in excel, Stata and SPSS.

> library(foreign)

> write.csv(mydata, “mydata.csv”, row.names=FALSE)
Another example is to export the data as a Stata file, using the foreign package
previously loaded:

> write.dta(mydata, "mydata.dta')

The newly created files will be stored in the working directory defined earlier on.

Some users will want to save the whole R project in which they are working. This
would include functions, variables, data (in R it is possible to load and work with
more than one dataset at a time). This option comes very handy, especially when
working with several datasets.

Thus, another approach is to save the current session or workspace as an image,
using the save./mage command, specifying the path where the workspace will be
saved. For example, to save ‘my current session’ in R, one needs to write the
following command, making sure to include the .RData extension.

> save.image(‘'c:/Folder/my_current_session._RData')

UK Data Service - Using R to analyse key UK surveys

Instead, a workspace can also be saved using the graphical interface:
File... Save workspace...

This will open a window to save the workspace in a particular folder, which can be
different from the current working directory. The name needs to be specified in the
‘File name’ section. The workspace will be saved in the chosen folder as an .RData
file.

IR RGui (64-bit)
File Edit View Misc Packages Windows Help

rR Save image in . ._‘ M

. -O- . Compl;lter » OS5(C) » Work » vi¢,|w| Search Work P|

Organize » Mew folder SRE, 4 @

& Downloads & Name Date modified Type
| Recent Places — s :
. AdminRightsDebug 23/08/201317:20 File folder
M Desktop
. Libraries
|5 Documents =
J7 Music
|| Pictures

B9 videos

1M Computer
£, 05
G¥ cmudata (\\ss2.d
5 homeS (Wnaskrr ™ 4 | Tl v

File name: my_current_session.RData -

Save as type: | R images (*.RData) - |

Hide Folders [Save J I Cancel]

—— T —— S —

The data can be retrieved using the load function

> load(''c:/Folder/my_current_session.RData')

Or using graphical interface as follows:

File... load workspace...

UK Data Service - Using R to analyse key UK surveys

3. R Studio

There is a more user-friendly way of using R that is becoming increasingly popular
among R users, which is R Studio. This software package is available to download
from this website: https://www.rstudio.com/.

In R Studio, R syntax works exactly the same as with the traditional R environment,
but the interface is more interactive, which makes it easier to use.

This is the main screen of R Studio:
Q) Fstudio —-_— -— (=i E

I[P tdt Code View Phows Session Duild Debug Tocks Help
]

= dding = &) Project fHane) =
Console - Environment Wistory]

| | tmport Datsets | List s
R version 3.3.0 (2016-05-03) -- “"supposedly Educational” T Gstn brcement - |
Copyright (C) 2016 The R Foundation for Statistical Computing |
Platform: x86_64-wbd-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welceme to redistribute it under certain cenditions.
Type 'license()' or 'licence()' for distribution details.

The global environment shows all
R 15 a collaborative project with many contributers. the active objects loaded into or
Type "contributers()' for more informatien and
"citation()' on how to cite R or R packages in publications. created b\,-' R.

Type ‘demo()" for some demos, 'help()' for on-line help, or
'help.start()"' for an HTML browser interface to help.
Type 'q()’' to quit R.

[workspace loaded from ~/.RData]

. Phes | Piows [|Facages | N | Viswer =
o -
This is the console where you write

commands and see the output. Here you can see plots you have
created, search for help, see the list
of files in the working directory and
a list of packages installed.

To create a new script, go to:

File... New File... New script...

Or just press the ‘Plus’ green button, as shown in the image below.

You can either select the command or just place the cursor on it, then press ‘Run’ or
type ‘Ctrl+R’

UK Data Service - Using R to analyse key UK surveys

) Rstudio
File Edit Code View Plots Session Build Debug Tools Help
-l 5384 [l - Addins -

@ Untitled1* ~—[7] Envirenment Histor
aQ - 8 ~#Run | 5% || #Source ~| = & | | [Amport

7% Global Environmen

&1 | | [lseurce o
1 library(foreign)|

This window is the script where you
can write and save your commands.
You can open as many scripts as you
want at the same time using the
'script’ option.

Files Plots | Packat

117 | (Top Level) * R Script +

Console 7

=0
FIALIUIL. ADU_UT-WUTTHINIIgWI L/ AUT \UT-W 1L

LSRR e o REEN ST, L S R B L L =T ISP P

The basics of how to use R have already been revised in the previous sections. In this
section, we only work in an example of how to use R, via R Studio.

UK Data Service - Using R to analyse key UK surveys

4. Opening UK Data Service datasets in R

In this guide, we use the Quarterly Labour Force Survey, January - March, 2016
(LFS), which can be downloaded from the UK Data Service website. The website also
has instructions on how to acquire and download large-scale government datasets.

4.1. Which version of UK Data Service datasets can I use in R?

With the commands read.dta() and read.spss(), R can open Stata and SPSS datasets.
In this guide, we will work with the Stata version of the LFS data.

First, if we haven't done it already, we need to load the package ‘foreign’ into the
memory by typing the following command on the script screen and clicking ‘Run’
(or Ctrl+R); the cursor needs to be on the same line of the command. Alternatively,
the command can be selected before clicking ‘Run’.

> library(foreign)

We then set the default working directory
> setwd(*'C:/Documents and Settings/user/My
Documents/R_ESDS/UKDA-7985-statall/statall™)

This way, we won't have to specify the full path of files that we are will be opening
or saving. We can finally open the file:

> Ifs<-read.dta("lIfsp_jml6_eul.dta')

Note: This may take some time to complete depending on the size of the dataset. R
will issue warnings, which can be safely ignored. These have to do with the way
Stata value labels are imported and does not affect data analysis.

In R jargon, we have loaded the content of the LFS file into an R object which is
called a ‘data frame’. By contrast with Stata and SPSS, R allows users to open several
datasets simultaneously, so we could for example load another issue of the LFS into
the memory. The number of datasets that may be opened simultaneously is only
limited by the computer's physical memory. R uses by default all the memory
available on your computer if necessary. This means however that the programme
can become slow if you open a very large dataset on a computer with a small
amount of physical memory (<1GB on latest versions of Windows)

Note: The foreign package can only read Stata files up to version 12'. To import data
from Stata version 13 and above, the data need to be saved in Stata 12 version. The
Stata command saveold is useful for this.

To save the file ‘example_v13.dta’ (already loaded in Stata) in Stata 12 version, use
the following command:

! Package ‘foreign’.https://cran.r-project.org/web/packages/foreign/foreign.pdf

UK Data Service - Using R to analyse key UK surveys

saveold example_v13, version(12)

The data will be saved in a version compatible with the ‘foreign’ package of R, so it
can be imported into R using the ‘read.dta’ function.

There are other alternatives to import data from Stata (up to version 14), SAS and
SPSS. This is the newly created package called ‘haven’ by Hadley Wickham and
Evan Miller.

We can find the number of observation and variables in the dataset by typing
> dim(1fs)

One can see that there are 90787 observations and 768 variables in the dataset

Typing:
> I1sO

will show us that the object ‘Ifs’ has appeared, but what if we want to get the list of
all variables in the dataset? We will need to type

> Is(Ifs)

Now, what if we want to inspect a particular variable, for example the ILO
employment status of respondents (this is the variable called ILODEFR in the LFS)?
We would need to type:

> I Ts$I1LODEFR

2 https://cran.r-project.org/web/packages/haven/haven.pdf

UK Data Service - Using R to analyse key UK surveys

.(’_MN.“ — __ ___&_ ___ _ _ __
File Bt Code View Dot Secion Build Debug Prolde Tools Help
P-@- B B8 = Adsdin - K Frojedt: o -
0| poripd rguide R+ s = e nwironment Histary =
) [Scuncontare G & - Hhun | %4 Soutce - # B _TimportDataset - 5 List =
1 Tibrary(foreign) = | Globsl Evironment »
21 setwd("C: /Users/mewxsasd /Documents/r guide/73B5STATALL TATBRFIEZAR4DTOCAROCRGAFFAE S A
A e TR Sl kel et sitibots : D1fs 90787 obs. of 768 variables
5 #lmporting data f tata using th functior
6 1fs<-read.dva(™1fsp_jmi6_eul.dra™)
7 dim(1fs)
8 1s
9 1s(1fs
10
11 # Inspect a partiular|
12 1fsSILODEFR
13
14 #getting the cla
15 class(1fsSILODEFR
16 class(1fs SHOURPAY
17
18 k
19
12 : £ Serigt
Coenole . . e
L891] Under 16 Under 16 In employment Inactive In employment
[896] Under 16 Inactive Inactive In esployment Inactive
[901] under 16 under 16 under 16 under 16 under 16
[306] Inactive Tnactive In employment In esployment Inactive fiet Plols | Pakages | Malp | Viewsr =
[911] TInactive Tnactive In employment TLO unemployed In esployment
[916] In employment In employment In employment In esployment Inactive el
[921] In employment Inactive under 16 Inactive Inactive
[926] In employment In employment Inactive Inactive Inactive
[931] Inactive Tnactive Inactive Inactive Under 16
[936] Inactive In employment In employeent Inactive Inactive
[941] In employment Inactive In employment Inactive In employment
[946] Inactive Inactive Inactive Inactive Inactive
[951] In employment Tn employment Tnactive In esployment In employment
[956] In employment Under 16 Under 16 Inactive Inactive
[961] Inactive Under 16 Inactive In employment In esployment
[966] Inactive In employment In esploysent In esploysent In esployment
[971] Inactive Inactive Inactive Inactive In esployment
[976] In employment Under 16 Tnactive In employment Under 16
[961] under 16 IL0 unemployed In employment In esployment Inactive
[286] In employment In employment Under 16 Under 16 Inactive
[991] In employment In employment under 16 under 16 Inactive
[996] Inactive Inactive Inactive Inactive Under 16
[reached getoption(“max.print”) -- omitted 89787 entries]

6 Levels: Does not apply No answer In employment ILO unesployed ... Under 16
>

Typing the name of a variable in a data frame will list the first 1000 observations for
that variable. Other commands provide more useful information, such as summary().
See the ‘Variable types’ section below for more details.

Since an R session may involve several datasets at the same time, having variable
names immediately recognised when typed requires that we ‘attach’ a dataset as the
default data frame.

> attach(lfs)

We can now omit the Ifs$ prefix when specifying a variable in our analyses.

Despite the practicalities of the attach/detach command, it is always advised to use
this code with caution, since the risk of confusion is greater, especially when
working with several datasets at a time and when the same variable names are used
in different datasets. Many online references can be found advising about whether
to use or not the attach function. For instance, on the UCLA website , there is a brief
explanation of the main issues.

4.2. Variables types

As we have already seen, variables are objects. R automatically stores variables using
the appropriate object class. Categorical variables are ‘Factors’ with ‘Levels’ as
categories within these, while continuous variables are ‘Numeric’ types of object. If

UK Data Service - Using R to analyse key UK surveys

one is unsure about which class an object belongs to, one can use the class()
command in order to find out.

> class(I1Ts$I1LODEFR)
> class(I1LODEFR)

Lo mmeime meemp s e s
6 Levels: Does not apply No answer I
> class (1fs$TLODEFR)

[1] "factor"

> attach(1fs)

> class(ILODEFR)

[1] "factor”

> class (HOURPAY)

[1] "numeric”

>

In the case of a categorical variable,
> levels(ILODEFR)

will return the categories of ILODEFR:

= levels (ILODEFR)

[1] "poes not apply"” "No answer"” "In employment” "ILO unemployed"
[5] "Inactiwve" "Under 16"
==

There are several ways to get basic information about a variable in R. One of the
most common is the summary() command. A convenient feature of summary() is
that it recognizes objects belonging to different classes and treat them accordingly
without returning an error message. Typing

> summary (ILODEFR)

> summary (ILODEFR)

Does not apply No answer In employment ILO unemployed Inactive
0 0 43849 2241 25226 £
Under 16
19471

will return the frequencies of each category of ILODEFR, whereas:
> summary (HOURPAY)

> summary (HOURPAY)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-9.000 -9.000 -9.000 -6.408 -9.000 2270.000

will compute basic descriptive statistics (mean, median, quartiles, maximum and
minimum) in the case of a continuous variable. R will decide automatically which
type of summary is best suited to a given object class. Typing summary(lfs) will
return summary information about each variable in the LFS dataset.

UK Data Service - Using R to analyse key UK surveys

5. Essentials of data manipulation

Before attempting to produce statistical analyses in R we need to learn how to
recode variables and deal with missing data.

5.1. Identifying and selecting variables and observations

Data frames consist of rows and columns, in the same way as Stata or SPSS datasets.
Each row and column can be identified by its humber between square brackets:
data.frame[row,colums]

For example, if we type:

> I1fs[6,80]

> 1fs[6,80]

[1] may

14 Levels: Does not apply No answer January February March April May ... December

> |

we will get the value of the sixth observation of the 80" column in the data — ‘May’,
which happens to be the variable called CONMON (Month started current job). By
default, R also provides the names of the levels of CONMON (remember, CONMON,
a categorical variable is a factorin R whose categories are levels). Therefore, typing

> CONMON[6]

will return the same value (ie the first observation of CONMON) — provided we have
attached the LFS dataset in the memory using the attach() command.

By contrast, typing

> I1¥s[,80]
would have returned all the first 99,999 values of CONMON, which is equivalent to
typing:

> CONMON

Following the same logic, we can select observations of a variable based on its
values with a conditional statement:

> summary (HOURPAY [HOURPAY>0])

will provide basic summary information of HOURPAY only for those with a value
greater than O (i.e non-missing values), whereas

> summary (HOURPAY [SEX=="Female® & HOURPAY>Q0])

will compute the mean hourly pay for women who have positive earnings, that is
who are actually employed since negative values are non responses. Similarly to

UK Data Service - Using R to analyse key UK surveys

Stata, ‘=" used to evaluate an expression (such as in ‘is the value of a variable equal
to another?’) is represented by ‘==’

5.2 Creating and recoding variables

There are different ways to recode variables in R. Below we follow a logic that is
familiar to users of SPSS and Stata.

Creating a new variable in R is straightforward. For example, we can type:
> Inhourpay <- log(HOURPAY)

which will create a new variable called Inhourpay which contains the log value of
hourly earnings,

Since the ‘Ifs' data has been ‘attached’ using the ‘attach’ function, the previous
command creates a free vector (variable). This means that Inhourpay is not part of
our lfs dataset (this is one of the issues related to the use of ‘attach’). If we want this
new variable to be stored in the ‘Ifs’ data, we would need to write the following
command:

> Ifs$SInhourpay <- log(HOURPAY)

This command tells R that we are creating the variable ‘Inhourpay’ and we are
storing it in the lfs data. For users who are not attaching data, it would be necessary
to use the Ifs$ prefix on both sides of the assign arrow (->) to tell R that we want the
log of the variable HOURPAY

> Ifs$Inhourpay <- log(1fs$HOURPAY)

We can also create a completely new variable by assigning to it the value that we
want. For instance, the following will create a new —free- variable called 'test’ with a
constant value of 1.

> test <- 1

{3 RSndio - —
File Edit Code View Plots Semion Build Debug Profile Took Help
Q- - @ 6D * Asams -

serit rguice R* ity = Lnviomment istory -
i 1 | %ource on S O, S #Pun b Souree - T _®mpodt Dateret =
32 SUmMMAry [HOURPAY - L1

b
3

35 # section J o 1fs 90787 obs. of 769 variables

36 #ev . d d vValues

7 Inhourpay Large numeric (90787 elements, 709.3 Kb)
38 1fs[6,80 tast 1

39 ConmON[G]
40 CONMONL ,80]

42 summary (HOURPAY [HOURPAY-D])
43 summary(HOURPAY[SEX-="Female’ & HOURPAY=0

45 Inhourpay log (HOURPAY)

47 # storing the variable Tnhourpay
49 1fsSlnhourpay log (HOURPAY)

51 # Creating the "test' variable

53 test 1

UK Data Service - Using R to analyse key UK surveys

The new free variables are stored in the R environment under the tab 'Values'. You
can also see that we now have 769 variables in the Ifs data. The extra variable
corresponds to ‘Inhourpay’ that we previously created.

5.3. Renaming variables and categories

In the case of categorical variables, we need to keep in mind that the possible values
of the variables are what the summary() or the levels() commands returned - ie
actual names: there are not numeric values to which value labels are added as with
other programmes:

> summary (i lodefr)

> summary (ILODEFR)

Does not apply No answer In employment ILO unemployed
0 0 43849 2241
Inactive Under 16
25226 19471 3

The following commands will create a variable called ndilodefr where respondents
in the ‘Unemployed’ and ‘Inactive’ categories of ilodefr are recoded as ‘Not

employed'.
> ndilodefr<-ilodefr
> levels(ndilodefr)[4:5] <-"Not employed”
> summary(ndilodefr)

> summary(ndilodefr)

Does not apply No answer In employment Not employed
0 0 43849 27467
Under 16
19471 2

=

In order to alter the name of a variable or categories of categorical variables, one
needs to directly rename the column of a data frame or the level of a factor.

> ngovtof<-GOVTOF2

> levels(ngovtof)

UK Data Service - Using R to analyse key UK surveys

> ngovtof<-GOVTOF2
> levels(ngovtof)

[1] "Does not apply" "No answer"

[3] "North East" "North west"

[5] "Yorkshire and Humberside" "East Midlands"

[7] "west Midlands" "East of England"

[9] "London" "South East"

[11] "South west" "wales"
[13] "Scotland" "Northern Ireland" =
>

> levels(ngovtof)[5]<-"Yorkshire*

will abbreviate the name of the fifth category of the Government Office Region
variable.

Note: The number [5] does not refer to the value attributed in the documentation of
the variable, but to the number of the level in sequential order (in the example
above, 6 refers to the sixth level in sequential order ‘East Midlands’).

Extra tips:

® As with any data manipulation exercise, caution is required, and it is
recommended to create new variables with the recoded value rather than alter
an original variable when handling missing values.

® The standard value attribution command in R is ‘<-'. However, ‘=" will also work in
Mmany cases.

@ Unless otherwise specified (in our case, by adding the Ifs$ prefix to variable
creation command), the objects created are not included in the data frame from
which they were computed. This should be kept in mind when combining such
new variables and those within the original data frame. R might return error
messages for example if missing values are coded differently in the two variables.

5.4. Missing values

Important: From now on, we will ‘detach’ the Ifs file, so all the data manipulation
will be stored in the actual data frame.

We first create a copy of the Ifs data, so we will keep an intact copy of the original
dataset. If you check the ‘Environment’ section of your R Studio screen, you will see
two datasets loaded: Ifs and lfs_copy

> Ifs_copy <- Ifs
We will now detach the Ifs file to avoid confusion. We will need to use the name of
the dataset and the sign 'S’ every time that we refer to a variable.

This process seems to be unnecessary cumbersome, but fortunately R Studio has a
very useful auto-completion function that allows us to avoid typing long fragments

UK Data Service - Using R to analyse key UK surveys

of code. This works for variables, datasets and functions. As usual, caution is needed
to make sure that we are selecting the right variable.

> detach(l1fs)

By convention, missing observations in R are coded as ‘NA". Handling missing values
in R is a bit more complex that in other packages as by default there are fewer safety
nets than in other packages, for instance to tell users how many observations with
missing values have been dropped in a variable. In addition, some commands can
return error messages when dealing with variables whose missing values have been
recoded to NA since they won't necessarily have the same number of ‘rows’.

We can decide to recode missing values of hourly pay as NA, so that we don't have
to select positive values each time we need to work with this variable. A simple way
to do this is to force the value of NHOURPAY to NA if it is smaller than 0.

> Ifs_copy$nhourpay<-I1fs_copy$HOURPAY
> Ifs_copy$nhourpay[1fs_copy$HOURPAY<0]<-NA

Users can recode values of either numeric objects or factors into missing values. A
safe way to proceed is to create a new variable, which will contain the modified
variable.

> Ifs_copy$nilodefr<-1fs_copy$I1LODEFR

In order to keep things simple we will simply remove the levels of the factor that
correspond to missing values.

> Ifs_copy$nilodefr[1fs_copy$nilodefr=="Does not
apply® | Ifs_copy$nilodefr=="No answer"]<-NA

> 1f5_c0b9$ni10defr[1fs_c0py§nﬁ10defr::'Does not apply" |

+ 1fs_copy$nilodefr=="No answer']<-NA
> summary (1fs_copy$nilodefr)
Does not apply No answer In employment ILO unemployed
0 0 43849 2241
Inactive Under 16
25226 19471

m

This method is not fully satisfactory since in some cases, such as contingency tables
created with the table() or xtabs() commands, the values of ILODEFR that have been
recoded as NA in NILODEFR will not appear anymore no matter what— one needs to
keep a record of changes in the number of observations in the dataset.

Forcing values of variables to NA is not always necessary. In the case of categorical
variables, there are commands which offer the option to mask categories that have
no observation, which R doesn't do by default.

UK Data Service - Using R to analyse key UK surveys

Once unwanted values have been recoded to NA, they can be taken care of by R's
own missing values functions. In several commands, adding the na.rm parameter
will prevent NAs from being shown (typing '?na.rm’ will provide more information) .
Depending on their needs, users can choose to use the option 'na.rm=T' (which tells
R to remove missing values from an analysis).

An alternative is to use conditional statements when possible or to select a subset of
the data:

> Ifs2 <- subset(lfs, ILODEFR!="Does not apply" &
ILODEFR!="No answer'™ & [ILODEFR!="Under 16"
& GOVTOF2!="Does not apply” & GOVTOF2!="No
answer™ & HOURPAY>0 & SUMHRS>=0)

which will create a new data frame of 9,979 cases, where the unwanted values (in
this case, the unused levels of ILODEFR, GOVTOF2, HOURPAY, SUMHRS) of the
original LFS dataset will have been removed. This dataset is made of respondents
who provided information about their region of usual residence, their economic
activity and who were either effectively working or on temporary sickness /
maternity leave or holiday during the reference week. Respondents who did not
provide information about their earnings are also kept out.

Users will need to select the new data frame either by specifying it explicitly with the
Ifs2$ prefix before the name of a variable or alternatively by attaching it as the
default dataset in memory.

We are now equipped with the necessary information to move to the next stage and
carry out basic analysis using R.

UK Data Service - Using R to analyse key UK surveys

6. Descriptive statistics using R - continuous
variables

In this section, we will review a few typical analyses that beginners may be
interested in: producing uni- and bivariate statistics with either continuous or
categorical variables.

Producing descriptive statistics in R is easy, some of the functions come ready to
use without any additional package needed. We have already seen above that the
summary() command provides essential information about a variable. For instance,

> summary (I fs_copy$nhourpay, na.rm = T)

will give information about the mean, median and quartiles of the hourly earnings of
respondents.

> summary (1fs_copy$nhourpay, na.rm = T)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.18 7.81 11.17 14.51 17.30 2270.00 80775

The describe() command in the Hmisc package provides a more detailed set of
summary statistics. We need to load Hmisc first

> install.packages("Hmisc")
> library(Hmisc)
Then
> describe(lfs_copy$nhourpay)

> describe(1fs_copy$nhourpay)
T1fs_copy$nhourpay

n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90
10012 80775 2133 1 14.51 10.14 5.20 6.25 7.81 11.17 17.30 24.78
.95
32.34
Value 0 20 40 60 80 100 120 140 160 180 200 600 820 980 2280
Frequency 4299 5081 529 73 13 5 4 1 1 1 1 1 1 1 1

Proportion 0.429 0.507 0.053 0.007 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
>

describe() also gives the number of observation (including missing and unique
observations), deciles as well as the four largest and smallest values.

In addition to this, commands producing specific statistics are also available:

> mean(1fs_copy$nhourpay,na.rm=T)

= mean (1fs_copy$nhourpay,na. rm=T)
[1] 14.50656
>

UK Data Service - Using R to analyse key UK surveys

The added na.rm = T (or na.rm = TRUE) option prevents missing values from being
taken into account (in which case the output would have been NA). Other similar
commands that compute individual statistics are available by default , such as sd(),
max(), min().

Using these individual commands may come in handy, for instance when further
processing of the result is needed:

> m<-mean(Ifs_copy$nhourpay,na.rm=T)

Let's round the results to two decimal places:

> rm<-round(m,?2)

We can see the final results by typing:

> rm

> m<-mean (1fs_copy$nhourpay,na. rm=T)
> rm <- round(m,2)

> rm
[1] 14.51
> -
Note:
> round(mean(lfs_copy$nhourpay,na.rm=T),2)

would have produced the same results and displayed it immediately on screen.

6.1 Distribution graphs

Another way to get a quick overview of the distribution of a variable is to produce a
histogram, which is what the hist() command does. We will ‘top-code’ values of
NHOURPAY over the 95" percentile in order for the histogram not to give too much
importance to extreme values.

> Ifs_copy$n95hourpay<-1fs_copy$nhourpay
> Ifs_copy$n95hourpay[1fs_copy$n95hourpay>32.34]<-
32.34

Note: This could also have been achieved this way the quantile() function:

> Ifs_copy$n95hourpay[1fs_copy$n95hourpay>

quantile(lfs_copy$nhourpay, .95, na.rm=T)7] <-
(quantile(Ifs_copy$nhourpay, -95, na.rm=T))

> describe(lIfs_copy$n95hourpay)

UK Data Service - Using R to analyse key UK surveys

> 1fs_copy$n9shourpay<-1fs_copy$nhourpay

> 1fs_copy$n95hourpay[1fs_copy$n9Shourpay>32.34]<-32.34
> describe(1fs_copy$n95hourpay)

1fs_copy$n95hourpay

n missing distinct Info Mean Gmd .05 .10 .25 .50 .75
10012 80775 1867 1 13.44 8.038 5.20 6.25 7.81 11.17 17.30
.90 .95

24.78 32.32

lowest : 0.18 0.24 0.40 0.52 0.60, highest: 32.07 32.20 32.22 32.30 32.34
>

> hist(Ifs_copy$n95hourpay)

The histogram will be visible in the ‘Plot’ tab in the lower right side of the R Studio
window. You can see it in another screen by clicking on ‘zoom'. There are other
options available for the plots; you are free to explore them on your own.

57 Plot Zoom [o[i |
[1
|

| Histogram of fs_copy$n95hourpay i

00

15

1000

Frequency

500
I

[‘
T T T T T T T 1
0 5 10 15 20 25 a0 a5

Ife_copySnSShourpay |

S S ——— J|

Custom titles, notes and legends as well as colours, can be added to a R plot. See
?hist for more details.

Instead of a histogram, we can also produce a box and whisker plot of the same
variable:

> boxplot(1fs_copy$n95hourpay)

UK Data Service - Using R to analyse key UK surveys

R also offers a wide range of bivariate statistics by default. In the same fashion as
mean() above, corr(), cov() var()provide basic measures of association.

First, we need to create a new (free) variable for a subset of respondents with a valid
answer in HOURPAY. We are selecting those respondents with HOURPAY values
greater than 0 and SUMHRS values greater than or equal to 0. The new variable
‘Shourpay’ will be stored under the ‘Values’ tab (remember that R is case sensitive).

> Shourpay<-1fs_copy$HOURPAY[1fs_copy$HOURPAY>0 &
Ifs_copy$SUMHRS>=0]
Now, we need to create an equivalent variable for a subset of respondents with a

valid answer in SUMHRS. We are selecting those respondents with HOURPAY values
greater than 0 and SUMHRS values greater than or equal to 0. The new variable is

‘Ssumbhrs’.
> Ssumhrs<-1fs_copy$SUMHRS[1fs_copy$HOURPAY>0 &
Ifs_copy$SUMHRS>=0]
> cor(Shourpay, Ssumhrs,use="complete.obs")

> cor(Shourpay, Ssumhrs)
[1] 0.07069734
). -

m

We could have obtained the same results by using the ‘lfs2’ subset we created
earlier:

> cor (I fs2$HOURPAY, 1fs2$SUMHRS, use="complete.obs™)

UK Data Service - Using R to analyse key UK surveys

Note: cor() and cov() allows users to choose the method used for computing the
correlation (between Kendall, Spearman, and Pearson) which enable running it on
non-normally distributed variables (for example on ordinal variables).

Note: cor() and cov() (but not var()) return an error when na.rm is specified, instead
of use=". Users will need to refer to the documentation (by typing ?cor) for
additional information.

6.2. Significance testing of correlation

We can perform a T test on the values returned by cor() with the cor.test().
cor.test()will also return a confidence interval:

> cor.test(Shourpay,Ssumhrs,use="complete.obs")

> cor.test(Shourpay,Ssumhrs,use="complete.obs")
Pearson's product-moment correlation

data: Shourpay and Ssumhrs
t = 7.0793, df = 9977, p-value = 1.546e-12
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.05114760 0.09019291
sample estimates:
cor
0.07069734

m

=

6.3. Tables of summary statistics

We may want to go a bit further and produce a table of summary statistics, that is to
inspect the distribution of a variable for (a) given subpopulation(s) or across the
categories of another variable, for which we will need the command summaryBy() in
the package doBy.

> install.packages("doBy")
> library(doBy)
> summaryBy(hourpay ~ govtof, data=I1fs2, FUN =

mean,na.rm=T)

UK Data Service - Using R to analyse key UK surveys

sum&aryBy(HOURPAY ~ GOVTOF2, data=1fs2, FUN = mean,na.rm=T)
GOVTOFZ2 HOURPAY.mean

Vo

1 North East 12.19841
2 North west 13.17324
3 Yorkshire and Humberside 12.54956
4 East Midlands 13.03731
5 west Midlands 13.15695
6 East of England 16.57797
7 London 18.38134
8 South East 16.35582
9 South West 14.43473
10 wales 11. 87465
11 scotland 14.75654
12 Northern Ireland 11.91893

m

Notes:

The first parameter which specifies the continuous and categorical variable
delimited by a tilde (~) is called a ‘formula’ in R jargon and is used by several other
commands (such as contingency tables or regression analysis).

@ In the case of summaryBy(), the second term of the formula is always the
categorical variable, and there can be more than one specified, in which case the
mean will be computed for each combined categories of the variables to the
right of the tilde.

® The 'FUN’ term can consist of several statistics, in which case they must be
combined using the c() command.

® The source of the data needs to be mentioned explicitly whether or not a data
frame has been previously attached as the default one.

A more complex version of the summaryBy() command looks like this:
> summaryBy (HOURPAY ~ GOVTOF2 + SEX, data=Ifs2, FUN =

c(mean, sd), na.rm=T)

UK Data Service - Using R to analyse key UK surveys

Console (

> summaryBy (HOURPAY ~ GOVTOF2 + SEX, data=1fs2, -

+ FUN = c(mean, sd), na.rm=T)

GOVTOF2 SEX HOURPAY.mean HOURPAY.sd
1k North East Male 14.20926 9.017783
2 North East Female 10.41487 5.559456
3 North west Male 14.64090 10.189212
4 North west Female 11.94266 6.857890
5 Yorkshire and Humberside Male 13.76752 9.160626
6 Yorkshire and Humberside Female 11.54768 7.670799
7 East Midlands Male 14.34620 9.392062
8 East Midlands Female 11.81958 7.506991
9 west Midlands Male 15.03254 11.221538
10 west Midlands Female 11.43466 6.115680
11 East of England Male 21.06299 101.083375
12 East of England Female 11.90800 6.734043
13 London Male 21.61242 31.088895
14 London Female 15.53039 9.821908
15 South East Male 17.86942 13.357904
16 South East Female 15.00910 30.779504
17 South west Male 16.94017 47.997525
18 South west Female 12.36161 7.894531
19 wales Male 12.83975 7.529966
20 wales Female 11.12066 6.819733
21 Scotland Male 15.52891 9.595710
22 scotTand Female 14.08600 13.524928 'I
23 Northern Ireland Male 12.43586 6.877448 2l
24 Northern Ireland Female 11.38500 5

. 758908 (1

6.4. Bar charts and plots of summary statistics

As with any other R command, we can store the output of summaryBy() into an
object. In this case, the default class is a data frame, with the same properties as the
ones described above. The advantage of having results stored in a data frame is that
it can be easily used with one of R graphical commands. These graphs can be saved
as files which can in turn be imported in Word documents.

Let us begin with a simplified version of the summary table shown above and store it
in a data frame called g:

> g<- summaryBy (HOURPAY ~ GOVTOF2, data=I1fs2,
FUN=c(mean,sd),na.rm=T)
There are several plots commands that we can use to plot these data: barplot() is

the most common and works out of the box with simple plots (for instance if we
only had one categorical variable in the data):

> barplot(g$HOURPAY _mean, names.arg=g$GOVTOF2,
horiz=T)

The first parameter specified the variable to be plotted, the second one the labels or
categories for each one of the means that are plotted. In both case, the data frame
to which the values belong needs to be specified.

This initial plot is not fully satisfactory: the names of the regions are not displayed
properly. Using a horizontal bar plot and adjusting the margins of the window
would give a better result:

UK Data Service - Using R to analyse key UK surveys

> par(mar=c(5,12,4,2))
> barplot(g$HOURPAY _mean, names .arg=g$GOVTOF2,
horiz=T,

col="blue”, las=1)

The first command widens the space dedicated to the labels in the graph window,
given the length of the regions’ names, whereas the las parameter allows labels to
be displayed horizontally:

2] ik doom RSN

Northern beland

Scotland

Wales

South West

South Easl

London

Fast of England

West Midlands

Fast Midlands

Yorkshire and Humberside

Marth West

North East

= -
w o
= -

o~

This graph still looks a bit rudimentary. The ggplot() command in the ggplot2 library
will give a better output of publication quality. It is however more complex to use.

First, let us go back to our initial two way table of hourly earnings by gender and
Government Office Region:

> install.packages("ggplot2*)
> library(ggplot2)
> g2<- summaryBy(HOURPAY ~ GOVTOF2 + SEX, data=I1fs2,

FUN = c(mean), na.rm=T)

Now, we create the plot
> ggplot(g2, aes(GOVTOF2, HOURPAY.mean, Fill=SEX)) +

geom_bar(stat="identity", position = "dodge") +

coord_flip() +

UK Data Service - Using R to analyse key UK surveys

xlab("Government Office Regions®) +

ylab(*Mean hourly pay (£)")

Walea -
South West=
South East

Landen SEX

B e
. Famale

East af England -

Government Office Regiens

WestMidiands

Fast Midlands -

Yarkshine and Humberside =

Morth West -

Morth East -

_ F;:
|
Y

o
B
=

10
Mean hourly pay (£)

Note: Unlike Stata, R does not assume that commands end with lines. It will
continue reading the script file until it finds the characters that are supposed to
complete it: in many cases, the closing bracket ‘).

Unfortunately, the syntax of ggplot2 does not fully respect the convention of most
other R commands. Each parameter is specified by adding a '+’, followed by the
parameter name and its own options between brackets:

The first parameter is the name of the data frame from which the graph is to be
drawn;

@ aes() or aesthetic specifies the first two variables to be plotted as 'x’ and 'y’,
whereas the third one is specified as ‘fill’ variable;

® geom_bar() specifies the appearance of the bars, for example whether stacked or
not. Stacked is the default option; here we used ‘dodge’, which allows putting
the categories of the 'fill’ variable side by side;

® coord_flip() specifies the orientation of the graph (ie horizontal)

@ xlab and ylab are the title of the x and y axis, respectively

UK Data Service - Using R to analyse key UK surveys

ggplot offers many possibilities and it is recommended that users interested should
consult the documentation on its website.

6.5 Saving and importing a graph in a Word document

Any R graph can be saved as an image file that can be subsequently imported in a
Word or Latex document, for example. In this example, we will create a PNG image
with the graph we have just created using the ‘ggsave’ option. By default, ggsave
saves the last plot created, so we can simply write the following command,
specifying the name of the plot (g2) and the format in which we want the graph. In
this case, we will select ‘png’, but it can be other formats, such as: ".pdf’, ".jpg’, etc.:

> ggsave(“g2.png”)
> ggsave(“g2.pdf?)

We can also store the plot in R and then save the specific plot that we need. This is
useful when we have several plots and we want some of them in a format that can
be exported. With ggsave we can also specify the dimensions of our graph and the
units of preference.

Here we save the plot in our R console under the name of ‘g2plot’
> g2plot<- ggplot(g2, aes(GOVTOF2, HOURPAY .mean,
Fill=SEX)) +

geom_bar(stat="identity", position = "dodge") +
coord_flip() +

xlab("Government Office Regions®) +

ylab("Mean hourly pay (£)")

Now we are saving (exporting) the plot into our working directory. The first
argument, ‘g2plot.png’ corresponds to the name and format we are giving to our
plot, the second argument is referring to the stored plot (in the R environment) that
we want to save, and the others arguments indicate the dimensions and units of our
png file.

> ggsave(“gz2plot.png”, g2plot,
width = 15, height = 20, units = "cm')

A more general approach to save any type of plot (without using ggsave) is the
following, where the first line of command creates the file, the second one ffills’ it
with a graph, and the third one, closes it.

> png("g2plot2.png*)
> ggplot(g2, aes(GOVTOF2, HOURPAY.mean, Fill=SEX)) +

UK Data Service - Using R to analyse key UK surveys

geom_bar(stat="identity", position = "dodge") +
coord_flip() +

xlab("Government Office Regions®) +

ylab("Mean hourly pay (£)*°)

> dev.offQ)

6.6 Weighted descriptive statistics

Most large UK surveys require sampling or grossing weights to be used in order to
produce results that can be generalised to the population of interests. Some of the
above R commands are designed to allow weights, such as weighted.mean(), a
variant of mean().

> weighted.mean(1fs_copy$nhourpay, Ifs_copy$PIWT16,

na.rm = T)

m

> wéighted. mean (1fs_copyS$nhourpay, 1fs_copy$PIWT16,
+ na.rm = T)

[1] 13.63983

>

The table produced by summaryBy above (section 6.3) cannot be replicated using
weights. Instead, we will need to use the dapply() function from the ‘plyr’ package.

Note: This requires installing the ‘plyr’ package, if not already installed.

> library(plyr)

> ddply(Ifs_copy,~GOVTOF2,summarise,
mean=we ighted.mean(HOURPAY[HOURPAY>=0 & SUMHRS>=0],

PIWT16[HOURPAY>=0 & SUMHRS>=0]))
We could also use the subset created earlier:
> ddply(1fs2,~GOVTOF2,summarise,
mean=we ighted.mean(HOURPAY, PIWT16))

For a given data frame(lfs2), and levels of one or several factors (ie categorical
variables) the weighted mean of hourpay will be computed.

Note: The command requires the variable for which the mean need to be computed
to be part of a data frame. The result is also a data frame, which lends itself well to
drawing weighted graphs of variables means over multiple groups.

> ddply(1fs_copy,~GOVTOF2,summarise, mean=weighted.mean

UK Data Service - Using R to analyse key UK surveys

+ (HOURPAY [HOURPAY>=0 & SUMHRS>=0],
+ PIWT16 [HOURPAY>=0 & SUMHRS>=0]))

GOVTOF2

North East

North west
Yorkshire and Humberside
East Midlands
wWest Midlands
East of England
London

South East

south west

wales

scotland
Northern Ireland

+ VYV PR EPFOCSNOWV R WNE
RS]

GOVTOF 2

North East

North west
Yorkshire and Humberside
East Midlands
west Midlands
East of England
London

South East

South West

wales

scotland
Northern Ireland

(=l RN = RV, N SR VU R S oy

e
NP o

11.
12.
.92358
.38793
.68881
.01175
.18752
.93942
.03390
.44920
.23977
.41796

mean

.54314
.69246
.92358
-38793
.68881
.61175
.18752
.93942
.03390
.44920
.23977
.41796

ddply(1fs2,~GOVTOF2 ,summarise,
mean=weighted.mean(HOURPAY, PIWT16))

mean
54314
69246

m

UK Data Service - Using R to analyse key UK surveys

7. Categorical variables: contingency tables

As with continuous variables, R offers several tools that can be used to create
contingency tables assess their statistical significance and graph the results.

7.1 One way frequency tables

The simplest R command that we can use is table() which returns the number of
observations within each level of a factor:

> a<-table(Ifs_copy$ILODEFR)
> a
> a
Does not apply No answer In employment ILO unemployed =
0 0 43849 2241
Inactive Under 16
25226 19471

By itself, table() does not compute proportions nor percentages. These have to be
specified manually using prop.table(). The following computes the percentages for
the above table out of the raw proportions given by prop.table(). We also round the
results to three decimal digits which actually means one digit once the proportions
have been converted to percentages:

> round(prop.table(a),3)*100

> round(prop.table(a),3)*100

Does not apply No answer In employment ILO unemployed
0.0 0.0 48.3 2.5 3
Inactive Under 16
27.8 21.4

7.2 Creating bar plots of one-way frequency tables

The barplot() function described above is also suited to draw simple graphs of
frequency tables. Going back to the previous command, we can type:

> g3<-round(prop-table(a),3)*100

> par(mar=c(4,8,2,2))

UK Data Service - Using R to analyse key UK surveys

> barplot(g3,horiz=T, xlim=c(0,50), las=1)

As above, we use par(), to adapt the size of the graph window to the length of
category names of the ilodefr variable. The option ‘mar’ stands for margin size and
represents a numeric vector of length 4, which sets the margin sizes in the following
order: bottom, left, top, and right.

The result is shown next:

Under 16

Inactive

ILO unemployed j

In employment

Mo answer

Does not apply

As with any plot() type of command, the colour of the bars, their orientation as well
as titles can be easily specified — users can type ?barplot for more information.

7.3 Two way or more contingency tables

The table() command can also handle two-way contingency tables.
> table(Ifs_copy$I1LODEFR, Ifs_copy$SEX)

We can get a cleaner table using the recoded version of sex and ILO economic
activity, following the logic described above. First, we recode non valid observations
(ie, ‘Does not apply’, ‘No answer’,” Under 16" as system missing (NA):

> nilodefr<-1fs_copy$ILODEFR
> levels(nilodefr)[1:2]<-NA
> levels(nilodefr)[4]<-NA

> nsex<-I1fs_copy$SEX

UK Data Service - Using R to analyse key UK surveys

> levels(nsex)[1:2]<-NA
> levels(ngovtof)[1:2]<-NA

We can use table again to see obtain the cleaned table.

> table(nilodefr,nsex)

> table(nilodefr,nsex)
nsex
nilodefr Male Female
In employment 22438 21411
ILO unemployed 1185 1056
Inactive 10532 14694

If three or more variables are involved, then we will need to use another command.
xtabs(), also available by default in R, allows for three way contingency tables. In
order to examine regional differences in ILO economic activity, we can type:

xtabs() which follows a syntax that is similar to summaryBy()since the variables in the
table are specified using a formula:

> xtabs(~1fs_copy$GOVTOF2 + Ifs_copy$I1LODEFR +
Ifs_copy$SEX, drop.unused.levels=T)
> xtabs(~1fs_copy$GOVTOF2+1fs_copy$ILODEFR+1fs_copy$SEX,

+ drop.unused. levels=T)
v + 1fs_copy$SEX = Male

1fs_copySILODEFR

1fs_copy$GOVTOF2 In employment ILO unemployed Inactive Under 16
North East 874 1 471 385
North West 2463 128 1271 1093
yorkshire and Humberside 1903 129 991 928
East Midlands 1727 75 830 729
west Midlands 2018 110 1002 204
gast of England 2257 80 964 985
Lendon 2521 138 878 1230
south East 3201 122 1329 1277
South West 1919 &89 926 793
wales 1019 55 601 432
scotland 1732 133 868 691
Northern Ireland 804 55 401 418

y + 1fs_copySSEX = Female

1fs_copy$ILODEFR

1fs_copy3$GOVTOF2 In employment ILO unemployed Inactive Under 16
North East 855 71 640 382
North West 2388 107 1661 1103
Yorkshire and Humberside 1920 109 1287 933
East Midlands 1560 B84 1108 725
west Midlands 1825 103 1389 831
east of England 2152 82 1402 894
London 2313 148 1523 1233
South East 2993 117 1863 1236
south West 1893 72 1256 747
wales 997 38 759 429
Scotland 1762 81 1185 701
Northern Ireland 753 44 621 392

Note: The output of table() and xtabs() can be stored into object of the ‘table’ class.
> b<- xtabs(~1fs_copy$GOVTOF2 + [Ifs_copy$ILODEFR +
Ifs_copy$SEX, drop.unused.levels=T)

UK Data Service - Using R to analyse key UK surveys

The crosstab() command in the package 'descr’ allows us to directly obtain a two-
way contingency table with row and/or column percentages

> install .packages(“descr*®)
> library(descr)
> crosstab(nsex, nilodefr, prop.r=T, plot=F, digits=1)

> crosstab(nsex,nilodefr,prop.r=T,plot=F,digits=1)
cell Contents

| count |
| Row Percent |

nilodefr
nsex In employment ILO unemployed Inactive Total
Male 22438 1185 10532 34155
65.7% 3.5% 30.8% 47.9%
Female 21411 1056 14694 37161
57.6% 2.8% 39.5% 52.1%
Total 43849 2241 25226 71316

A useful feature of crosstabl() is that it also allows observations to be weighted. We
can thus produce the same command as above using the LFS weights PWT16:

> crosstab(nsex, nilodefr, prop.r=T, plot=F,
weight=I1fs_copy$PWT16)

-

> crosstab(nsex,nilodefr,prop.r=T,plot=F,weight=1fs_copy$PwT16)
Ccell Contents

| Count |
\ Row Percent |

nilodefr
nsex In employment ILO unemployed Inactive Total
Male 16791756 916051 7845580 25553387
65.7% 3.6% 30.7% 48.8%
Female 14702835 761667 11305983 26770485
54.9% 2.8% 42.2% 51.2%
Total 31494591 1677718 19151563 52323872

UK Data Service - Using R to analyse key UK surveys

Note: Adding the option digit=1 (one decimal place), will make the table easier to
read.

7.4. Test of association between categorical variables

We saw earlier that cor() allows us to compute Spearman and Kendall correlation
coefficients, together with a significance test which provides a measure of
association between ordinal variables. R also provides several ways to compute chi-
square tests for contingency tables. In its simplest form, the chisq.test() command
computes the Pearson’s Chi-Square test for objects of the table class.

> tfl<-table(nsex,nilodefr)
> chisq.test(tfl)
Now, let’s have a look at regional difference in economic activity for women only:
> tf2<-table(ngovtof[nsex =="Female®], nilodefr[nsex
=="Female®"])
> chisq.test(tf2)

> chisq.test(tf)
Pearson’s Chi-squared test

data: tf
X-squared = 93.866, df = 22, p-value = 7.472e-11

-

crosstab() provides its own version of the Pearson’s Chi Square. It also provides
McNemar's test and Fisher's Exact test.

The result of the test can be displayed immediately or stored in an object. The code
below will reproduce the result for tfl.

> tl<-crosstab(nsex,nilodefr,prop.r=T,plot=F,chisq=T)
> t1$CST
> tl$csT

Pearson's Chi-squared test

data: tab
X-squared = 592.51, df = 2, p-value < 2.2e-16

>

An object of class ‘CrossTable’ contains a number elements (CST is one of them),
some of which can be reused for further applications including graphs. Use

UK Data Service - Using R to analyse key UK surveys

summary to inspect the object ‘t1’ and use the dollar sing ($) after the object to
access each one of them

> class(tl)
> summary(tl)
> tistab

7.5. Univariate and bivariate graphs for categorical variables

Most of the graphical commands described above also allow us to compute graphs
for categorical variables:

barplot() provides a simple way to plot the output from crosstab).

> t2<-crosstab(nilodefr, ngovtof, prop.c=T,
plot=F,chisq=T, Ifs_copy$PWT16)

> par(mar=c(5,10,4,2))

> barplot((t2$prop.col*100), horiz=T,las=1)

We use the prop.col (ie column proportions) element of the crosstab output we
called 't2' to compute a graph of the percentages of respondents in each ILO
economic activity category by Government Office Region:

Morthern Ireland
Scotland
Wales

South West
South East
London

East of England
West Midlands
East Midlands
Yorkshire

MNorth West
MNorth East

w

= —

20 40 60 80 100

UK Data Service - Using R to analyse key UK surveys

As above in the case of continuous variables, barplot()provides a tool for the rapid
visualisation of contingency tables. However, users who need more advanced

graphic capabilities will use ggplot()and will refer to the package documentation for
more information.

UK Data Service - Using R to analyse key UK surveys

8. Plotting simple maps in R

This section presents a concise introduction on how to plot simple data
(proportions, means, and other descriptive statistics) on a map. We will use the level
of geography available in many UK Data Service datasets: Government Office
Regions for England and Wales. We will use a contingency table of Government
Office Region by economic activity and gender to build a map of weighted female
employment rates by Government Office Regions for 2016.

Users need to check whether the following three packages have already been
installed and if not, download and install them using the install.packages() and
library() commands.

@ rgdal
® tmap

@® raster

Let's begin by creating a new directory in order to keep our files tidy
> dir<-"C:/Documents and Settings/INSERT YOUR USER
NAME HERE/My Documents/R_ESDS/maps'’

> setwd(dir)

8.1. Acquiring and downloading the data

The files containing administrative boundary data that are necessary to create maps
are available through the UK Data Service as part of Census Support. Users
registered with a UK higher education institution are able to directly access the data
via their institution’s login and password. Other users will need to register with the
UK Data Service in order to obtain one.

You should go to the Census Support page for this data and click on the tab 'Get
census data’ and select ‘Boundary Data’. After having logged in, you will need to
scroll down the window and select the 'Easy download’ link in order to access the
main boundary data selection page.

UK Data Service - Using R to analyse key UK surveys

UK Data Service home Site Search FAQ Help

UK Data Service
Census Support About Census Support Get census data Use census data Census news and events
Y Census > Gel dala > Boundary data

>

|||| Z
e # LoGIN REGISTER

Census boundary data

Aggregate data SHARE % Q DISCOVER UK DATA SERVICE
Flow data

susData @ Website

We provide access to digitised boundary datasets
Microdata and geographic look-up tables corresponding to the
census geography of the UK. Digital boundaries are
provided in common Geographical Information
Related data System (GIS) formats.

#® Boundary data

RELATED LINKS

A beginner's guide to UK geography

Explore online = Guide to census boundary data

ACCESS BOUNDARY DATA

Data which fall under Open Government Licence (OGL) are available to all users. Non-
OGL data may still be subject to access restrictions requiring login, which is only available
to staff and students from UK further/higher education institutions. Details of which data is
open and restricted can be found on the boundary data licenses page.

EasyDownload
The most regularly requested census boundaries available as ready-to-use

national datasets in popular formats

m Boundary Data Selector
%I This facility lets you select the boundaries you want, for the area you want, in the

format you want

2011 boundaries: Click on the name to
English Census Wards 2011 English Census Mergad Wards 2011
English Counties and Inner/Outer London 2011 English Districts, UAs and London Boroughs

201

English European Electoral Regions 2011 English Lower Layer Super Output Areas 2011
English Middle Layer Super Output Areas 2011 English Outline 2011
English Output Areas 2011 English Primary Care Organisations 2011
English Regions 2011 English Strategic Health Authorities 2011
English Wastminster Parliamentary Constituencies English Workplace Zones 2011
201

2001 boundaries: Click on the dataset name to downioad...

Click on ‘English Government Office Regions 2011’ and follow the instructions to
download the files on your computer. You will need to select ‘Download features in
Shapefile format as ZIP file' as the file format.

UK Data Service - Using R to analyse key UK surveys

UK Data Service Data available News Accessibility Statement
Census Support
@\. Home ' Easy Download ' Download Options

||||é

QUICK ACCESS TO

Easy Download
Boundary Data Selector You have selectad the following dataset to download: English Regions, 2011

Thematic M

ematic Mapper You can download an individual file using your web browser by clicking on its name in the table. If you use Firefox/Chrome, the best
Postcode Directory way to do this is to click with the right mouse button and go to Save Link As. With Internet Explorer you should go to Save Target
Postcode Data Selector As after clicking with the right mouse button.

Warning: Some of these boundary files are very large. Please make sure you have plenty of space on your PC or server to enable
you to download and uncompress these files

Help on Using Easy Download | Data Formats | What is Generalisation? | Zip and Tar Gzip Files

English Regions, 2011
Download attributes in CSV format as ZIP file
Download features in KML format as ZIP file
Download features in Maplinfo TAB format as ZIP file

Download features in Shapefile format as ZIP file

The downloaded file should be called £ngland_gor_2011.zjp

Repeat this for Wales by clicking on the respective tab of the previous screen and
select:

® 'Welsh Outline 2011' -> Wales_ol_2011.zip

Copy the zip files just downloaded into the newly created ‘'maps’ directory and unzip
them. There should now be 8 files in the directory:

MName - Date modified Type Size

ﬁ england_gor_2011.dbf 28/10/2015 13:30 OpenOffice.org 1.... 1KB
,!,Z] england_gor_2011.prj 28/10/2015 1550 PRJ File TKB
,!a england_gor_2011.shp 28/10/2015 15:50 SHP File 13,069 KB
,!a england_gor_2011.shx 28/10/2015 15:50 SHX File 1KB
ﬁ wales_ol_2011.dbf 28/10/2015 15:54 OpenOffice.org 1. TKB
,!,Z] wales_ol_2011.prj 28/10/2015 15:54 PRI File 1KB
,!a wales_ol_2011.shp 28/10/2015 15:54 SHP File 3122 KB
,!a wales_ol_2011.shx 28/10/2015 15:54 SHX File 1KE

8.2. Mapping in R - the basic principle

Creating a map in R can be decomposed into a few simple stages:

@ collate together the boundary files (‘'Shapefiles’) that we downloaded from the
UK Data Service, in order to build a map of England and Wales

UK Data Service - Using R to analyse key UK surveys

@ add the data that we want to plot on the map
@ decide on the intervals to be represented on the map, as well as the colour

@ finally, we can plot the map itself

‘Shapefiles’ are usually made of a set of four actual files: .shp, .dbf, .shx, .cst. The first
file type, "shp’, is the largest one and contains the geographical coordinates. They
will be the ones we will be explicitly dealing with in this example. The other ones
contain auxiliary information and are accessed by the mapping software in the
background.

Given the limited scope of this example, detailed description of the Shapefile format
will not be provided here. Users interested in learning, more about the specification
of Shape files can consult this documentation on ESRI website.

An essential characteristic of shapefiles is that they are made of rows and columns
in a similar fashion to conventional datasets. Columns are ‘content’ such as sets of
geographical coordinates, area names and labels, or data that can be plotted on the
map. Another one is that the maps that will be dealt with here are made of
‘polygons’, which represent the rows of a Shape file. A polygon is essentially a
continuous area, the boundaries of which may be drawn without 'lifting the pen’
(ESRI 1998). The mapping process described below essentially consists of filling
these polygons with a colour or a symbol which represents the distribution of some
variable we are interested in.

Since the shapefiles for England and Wales use the same reference system to draw
the polygons (longitude and latitude coordinates), adding parts to an existing map is
relatively straightforward. We can therefore append the maps for Wales with the
map of England by copying it as an additional row into the Shapefile for England.
The fact that the English dataset has internal boundaries (the Government Office
Regions), whereas Wales does not, is not an issue here.

We will now move to the first stage of drawing our map

8.3 Producing the data needed for mapping

The command below produces a weighted three-ways contingency table of ILO
economic activity by gender for each Government Office Region and country of the
UK, which we will use to experiment with maps in this example.

Note: Specifying the weight on the left hand side of the formula is an alternative
way of producing a weighted cross tabulation, which can deal with three way

UK Data Service - Using R to analyse key UK surveys

contingency tables, but does not provide a ready to use output in the same fashion
as Crosstab() did as we saw before.

> tmp<-xtabs(lfs_copy$PWT16~ngovtof+ni lodefr+nsex)

For this example, only data for females are being selected
> tf<-(tmp[,.2])

as.data.frame.matrix() below converts the output of the table (for which at the same
time we compute the row percentages as we did in a previous section) into a data
frame which can then be conveniently merged to the 'data’ slot of the shapefile. In
cases like this (output of table() type of commands), this is preferred to the more
common as.data.frame(), which would not work properly.

> tf<-
as.data.frame._matrix((100*round(prop-table(tf,1),3)))

We can remove the rows representing Scotland and Northern Ireland (rows 11 and
12 in the dataframe tf). This finalises the preparation stage of the data:

> tf<-tf[-c(11:12),]
To add data to the Shapefile, we need to assign labels to each one of the GORs that
will match those in the boundary file. We add a variable with the name of the region
(so far these were the names of the rows of three data frames, not column/variables

by themselves). This can also prove useful at a later stage to double check the
results of the matching

> tF$GOR<-row.names(tf)
We also need to change the name for 'Yorkshire' since the actual name of the region

is 'Yorkshire and The Humber' and is also the name under which the region is
identified in the shapefile.

> tFSGOR[tFSGOR=="Yorkshire"]<- “Yorkshire and The
Humber”

Let us abbreviate the variable names to make it easier when typing commands.

> names(tf)[1:3]<-c("empl ™, "unemp®,"inac")

Let us have a look at the final results
> View(tf)

UK Data Service - Using R to analyse key UK surveys

File Edit Code View Plots Session Build Debug Profile Tools Help
Q- =~ (=11 - | Addins ~

37 script rguide.R 37 script rguide (1).R* ik | Wales _| Englar
" Filter

empl unemp inac GOR

North East 51.7 4.3 44.0 North East

North West 54.8 2.6 42.6 North West

Yorkshire 53.7 3.1 432 Yorkshire and the Humber
East Midlands 54.0 3.0 43.0 EastMidlands
West Midlands 51.5 3.1 454 West Midlands
East of England 56.5 2.3 41.3 East of England

London 56.8 3.9 39.3 London
South East 57.4 2.3 403 South East
South West 55.8 2.3 419 South West
Wales 53.1 2.3 445 Wales

Showing 1 to 10 of 10 entries

8.4 Merging the boundary shapefiles and the data to be plotted

At this stage, we need to load the packages.

> library(maptools)

\%

library(tmap)

\%

library(rgdal)

\%

library(raster)

The following command from the package ‘rgdal’ will give you information about
the shapefile, like the projection, the number of units, etc.

> ogrinfo(dsn=dir, layer="england_gor_2011")

> ogrinfo(dsn=dir, layer="wales_ol_2011'")

Opening shapefiles is also a straightforward affair using the package ‘rgdal’

> England<- readOGR(dsn=dir, layer="england gor 2011")
> Wales<- readOGR(dsn=dir, layer="wales ol 2011')
Note: This will return an error if the directory where the Shapefiles are stored was
not properly specified.

The files are now stored in a special class of object called 'spatial polygons data
frames'.

We can now append the spatial data frames together.

> ew<- bind(England, Wales)

UK Data Service - Using R to analyse key UK surveys

You can use the ‘plot’ function to see the new map created
> plot(ew)

Now we need to merge the data from the contingency table with the ‘ew’ spatial
data frame we have created. We first need to create the same variable '‘GOR' of the
contingency table in the shapefile; we need to convert the variable into a variable of
class ‘character’, otherwise a warning would be issued.

> ew$GOR<- ew$name
> ew$GOR<-as.character (ew$GOR)

Then we use the ‘left_join' function of the 'dplyr' package (install it first if you have
not done so before)

> library(dplyr)

> ew@data<-left_join(ew@data, tf, by="GOR'")

8.5. Plotting the map

We are ready to draw the map using the package ‘tmap’. We will store our map it
into an object called 'empFemale’.

> empFemale<- tm_shape(ew)+
tm_polygons('empl™,
title = "% employed females",

textNA="No data",

palette="Blues", alpha=0.85,
breaks = c(-Inf, 52, 54, 56, Inf))+

tm_layout(legend.outside = F,
bg.color = "white"™)

In the above code, the first line specifies the Shapefile and the second line specifies
the variable to be plotted. There are also more options available; here we only used
some of the most useful, like:

‘title' is used to give a title to the legend;
‘textNA' specifies the label for missing data (in case you have missing values);
‘palette’ gives you the colour scheme;

‘alpha’ specifies the shade of the colour for the palette,

UK Data Service - Using R to analyse key UK surveys

‘breaks’ is used to manually specify the intervals of the variable plotted.

We also used tm_layout to specify some options for the legend and background
colour.

We can examine the resulting map by typing:
> empFemale

% employed females

Less than 52
52 to 54
54 to 56
56 or more

>

Finally, as previously, we can save the results as a png file.

> png('empFemale.png”, width = 11, height = 10,
units = "cm", res = 600)

> empFemale

> dev.offQ)

This example can be expanded to build and map ad-hoc statistics with the data
added to the Shapefile. For instance, by repeating the procedure described above
with the contingency table of economic activity for men, one could map gender
ratios of employment rates. Similarly, means or other descriptive statistics from
continuous variables could be merged into the Shapefile instead.

UK Data Service - Using R to analyse key UK surveys

9. Further commands and analyses

We have reached the limits of what can be illustrated within the space of this guide.
Users interested in carrying out more advanced analysis should consult the links and
references listed in the next section ‘Additional resources’.

The following non exhaustive list provides a few examples of commands and
packages that tackle common types of analysis which might be relevant to users of
large UK surveys

® Regression analysis: the glm() command installed by default with R can be used
for fitting simple and multiple linear and non linear regressions including logistic
regression and more generally models falling under the Generalized Linear
Model framework. In addition, the package ‘lme4’ allows to fit linear multilevel (ie
mixed effects) models, whereas ‘nlme’ allows to fit non linear multilevel models.

® Complex survey data and analysis commands and functions can be found in the
‘survey’ package. It includes commands for taking into account stratified and
clustered samples, weights compute design effects and confidence intervals,
etc..

@ Users interested in latent variable modelling will be interested in the factanal()
command. Other resources are provided in the ‘poLCA’ (Latent Class Analysis),
‘ltm’ (Latent Trait modelling), 'sem’ (Structural equation modelling) packages

@ Users interested in longitudinal and time series analysis will be interested in the
‘stats’ and the, ‘tseries’ packages. The packages ‘survival’ and ‘eha’ deal with event
history and survival analysis, whereas ‘grofit’ and ‘plm’ are designed for panel
data and growth analyses.

UK Data Service - Using R to analyse key UK surveys

10. Additional online resources

There are hundreds of web sites dedicated to R that users can consult, in addition to
CRAN and the main R help list, R-Help with its searchable archives. A few of the
most common ones are listed here:

® www.ats.ucla.edu/stat/r/ - as with other statistical packages, the UCLA website
provides a good starting point for the beginner

® www.unt.edu/rss/class/Jon/R_SC/ at the University of North Texas provides
useful links to R resources

® www.r-bloggers.com/ contains many posts about R - in particular, www.r-
bloggers.com/r-tutorial-series-r-beginners-guide-and-r-bloggers-updates/
contains useful introductory information

@ stats.stackexchange.com/ is not specific to R but contains forum-type questions
and answers raised by R users

® www.harding.edu/fmccown/r/ presents useful information about graphs in R.

® www.bristol.ac.uk/cmm/learning/course.ntml - the Centre for Multilevel
modeling at Bristol University has several pages dedicated to R users interested in
Multilevel modeling

UK Data Service - Using R to analyse key UK surveys

11.References

R Core Team. (2017). R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
https://www.r-project.org/

RStudio Team. (2016). RStudio: Integrated Development for R. Boston, USA: RStudio,
Inc. Retrieved from http://www.rstudio.com/

Tennekes, M. (2017). tmap: Thematic Maps. R package version 1.10. Retrieved from
https://cran.r-project.org/package=tmap

Wickham, H., & Francois, R. (2016). dplyr: A Grammar of Data Manipulation. R
package version 0.5.0. Retrieved from https://cran.r-project.org/package=dplyr

Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York,
2009. Retrieved from https://cran.r-project.org/package=ggplot2

