This site uses cookies

Some of these cookies are essential, while others help us to improve your experience by providing insights into how the site is being used.

For more detailed information please check our Cookie notice


Necessary cookies

Necessary cookies enable core functionality. This website cannot function properly without these cookies.


Cookies that measure website use

If you provide permission, we will use Google Analytics to measure how you use the website so we can improve it based on our understanding of user needs. Google Analytics sets cookies that store anonymised information about how you got to the site, the pages you visit, how long you spend on each page and what you click on while you’re visiting the site.

Webinar: Social Network Analysis: Fundamental Concepts

1 Sep 2020 2:00 pm - 3:00 pm
Online
Training
Data skills
Other
Vast swathes of our social interactions and personal behaviours are now conducted online and/or captured digitally. Thus, computational methods for collecting, cleaning and analysing data are an increasingly important component of a social scientist’s toolkit. Social Network Analysis (SNA) offers a rich and insightful methodological approach for uncovering and understanding social structures, relations and networks of association.
This free webinar, organised by the UK Data Service, is the first in a series of three on understanding and using SNA methods for social science research purposes. In this webinar we cover the fundamental concepts and terms underpinning SNA, and demonstrate how network data is structured and differs from more traditional social science datasets (e.g. social surveys). We will also outline a simple analysis of social network data using the Python programming language. As a result of attending this webinar, participants will possess the necessary knowledge and vocabulary to undertake a SNA research project.
Details:
  • Level: Introductory, for individuals with no prior knowledge or experience of social network analysis
  • Duration: 45 minutes, followed by questions
  • Pre-requisites: None
  • Audience: Researchers and analysts from any disciplinary background interested in employing network analysis for social science research purposes
  • Programming language: Python is used to examine the structure of social network data and to perform a simple analysis
  • Materials: Participants will have access to an interactive online notebook through which they can learn more about SNA and execute Python code
  • Learning outcomes: Understand fundamental concepts and terms associated with SNA and understand how social network data are structured
Webinar two demonstrates the steps needed to collect and clean social network data, drawing on two examples: Twitter data and administrative data that can be repurposed for social network analysis.
Webinar three rounds off the series by diving into the concepts behind social network methods of analysis and presents some research examples using Python.